Review of Introduction to Probability and Statistics

Chris Mack, http://www.lithoguru.com/scientist/statistics/review.html

Homework #3

- 1. A 1-gallon can of paint covers an average of 513.3 square feet with a standard deviation of 51.5 square feet. Consider a sample of 40 of these 1-gallon cans. What is the probability that this sample will cover between 510 and 520 square feet per can?
- 2. A manufacturing process produces nominally 800-lumen LED bulbs with a standard deviation of 12 lumens. To test the output of the manufacturing process, a sample of 140 bulbs are measured. If the mean of this sample is to be used for control purposes, what can be said with 99% probability about the maximum size of the error of the sample mean?
- 3. In six measurements of the melting point of tin, a chemist obtained a mean and standard deviation of 232.26 and 0.14 Celsius, respectively. What is the 98% confidence interval for the chemist's estimate of the actual melting point of tin?
- 4. A fuse manufacturer claims that at a certain current their fuse will blow in 12.4 minutes on average. To test this claim, 20 fuses were selected at random from a manufacturing lot and subjected to the specified test current. The mean time to blow for this sample was 10.63 minutes, with a standard deviation of 2.48 minutes. Does this data tend to support or refute the manufacturers claim? Assume that fuse time to blow follows a normal distribution.
- 5. An infinite population is known to have a standard deviation that is 18% of the mean. When using a sample to measure the mean of this population, how big must the sample size be so that the standard error of the sample mean is 2% of the mean?
- 6. An optical lens manufacturer purchases starting glass material in slabs and knows that historically the refractive index of the slabs has a variance of 1.26×10^{-4} . For a particularly critical product they sample the incoming glass and reject a shipment if the sample variance of a 20 piece sample exceeds 2.0×10^{-4} . Assuming that the sample is randomly drawn from a normal population, what is the probability that an historically typical shipment will be incorrectly rejected?
- 7. An engineer wishes to investigate whether a process change will improve the yield of a manufacturing process. If y_1 is the yield of the existing process of record, and y_2 is the yield of the proposed process, write the most appropriate null and alternative hypotheses for an hypothesis test.
- 8. The specification for the breaking strength of a certain fishing line is 18 pounds. If five samples of that fishing line are obtained and tested to give a mean strength of 16.9 pounds, with a standard deviation of 0.9 lbs, use an hypothesis test to answer the question "is this line meeting its specifications?"

- 9. Two processes are being compared to determine if one produces wires with a lower resistance. For process 1, 32 samples are prepared yielding x
 ₁ = 0.106 Ω and s₁ = 0.008 Ω. For process 2, 45 samples are prepared yielding x
 ₂ = 0.093 Ω and s₂ = 0.010 Ω. At the 0.05 significance level, are these two processes different?
- 10. The table below gives average weekly losses of worker-hours due to accidents at 10 warehouses before and after a certain safety program was put into place.

	Site 1	Site 2	Site 3	Site 4	Site 5	Site 6	Site 7	Site 8	Site 9	Site 10
Before	45	73	46	124	33	57	83	34	26	17
After	36	60	44	119	35	51	77	29	24	11

Using a 0.05 significance level, was the safety program effective?

11. An experiment makes 49 measurements and finds a mean of 12.4 and a standard deviation of 2.9. Create 95% confidence intervals for both of these statistics.