

Summary of Equations

Bernoulli Random Variable
 Consider a coin toss that produces a head (success) with probability p
$X = \begin{cases} 1 & if heads (success) \\ 0 & if tails (failure) \end{cases} p_X(k) = \begin{cases} p & if k = 1 \\ 1-p & if k = 0 \end{cases}$
$E[X] = \sum_{all x} x p_X(x) = p$
$var[X] = \sum_{all \ x} (x - E[X])^2 \ p_X(x) = p(1-p)$
© Chris Mack, 2014 Online Review Course of Undergraduate Probability and Statistics 7

Summary of Equations **Sampling Distribution of the Mean** $\bar{X} = \frac{1}{n} \sum_{i=1,n} X_i$ $E[\bar{X}] = \mu$ $var[\bar{X}] = \frac{\sigma^2}{n}$ $Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$ or $Student's t = \frac{\bar{X} - \mu}{S/\sqrt{n}}$ Confidence Interval: $\bar{x} - t_{\alpha/2} \frac{s}{\sqrt{n}} < \mu < \bar{x} + t_{\alpha/2} \frac{s}{\sqrt{n}}$ $s^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$ We have Course of Undergraduate Probability and Statistic

