Summary of Equations

Set Basics

$A \cap B=\{x \mid x \in A$ and $x \in B\} \quad A \cup B=\{x \mid x \in A$ or $x \in B\}$
Useful Identities:

$$
\begin{array}{ll}
\Omega^{c}=\phi & A \cup A^{c}=\Omega \\
\left(A^{c}\right)^{c}=A & A \cap A^{c}=\phi
\end{array}
$$

DeMorgan's Laws:

$$
\begin{aligned}
& \left(\bigcup_{i=1}^{n} E_{i}\right)^{c}=\bigcap_{i=1}^{n} E_{i}{ }^{c} \\
& \left(\bigcap_{i=1}^{n} E_{i}\right)^{c}=\bigcup_{i=1}^{n} E_{i}{ }^{c}
\end{aligned}
$$

© Chris Mack, 2014 Online Review Course of Undergraduate Probability and Statistics

Summary of Equations

Combinatorics

- Draw k from a set of n with replacement
- Order matters: simple product rule $=\mathrm{n}^{\mathrm{k}}$
- Order doesn't matter: $\mathrm{n}^{\mathrm{k}} / \mathrm{k}$!
- Draw k from a set of n without replacement
- Order matters: k-permutations ${ }_{n} P_{k}=n!/(n-k)$!
- Order doesn't matter: $\binom{n}{k}=\frac{{ }_{n} P_{k}}{k!}=\frac{n!}{k!(n-k)!}$
- General problem: break it into stages where each stage is one of the above types
© Chris Mack, 2014 Online Review Course of Undergraduate Probability and Statistics

Summary of Equations

Probability Axioms and Identities

- Axioms of Probability
- Non-negativity: $\mathbb{P}(E) \geq 0$ for all E
- Normalization: $\mathbb{P}(\Omega)=1$
- Additivity: for disjoint events, $\mathbb{P}\left(\bigcup_{i=1}^{n} E_{i}\right)=\mathbb{P}\left(E_{1}\right)+\mathbb{P}\left(E_{2}\right)+\cdots+\mathbb{P}\left(E_{n}\right)$
- Given any probability law that obeys the probability axioms,
$-\mathbb{P}(\varnothing)=0$
$-\mathbb{P}\left(E^{c}\right)=1-\mathbb{P}(E)$
$-\mathbb{P}(E) \leq 1$
- If $E \subset F$ then $\mathbb{P}(E) \leq \mathbb{P}(F)$
$-\mathbb{P}(E \cup F)=\mathbb{P}(E)+\mathbb{P}(F)-\mathbb{P}(E \cap F)$
© Chris Mack, 2014 Online Review Course of Undergraduate Probability and Statistics

Summary of Equations

Probability

- Conditional Probability: $\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$
- Total Probability:
- Let $A_{1} \ldots A_{n}$ be a partition of the sample space

$$
\mathbb{P}(B)=\sum \mathbb{P}\left(B \mid A_{i}\right) \mathbb{P}\left(A_{i}\right)
$$

Example: $\mathbb{P}(B)=\mathbb{P}(B \mid A) \mathbb{P}(A)+\mathbb{P}\left(B \mid A^{c}\right) \mathbb{P}\left(A^{c}\right)$

- Bayes' Rule: $\mathbb{P}(A \mid B)=\frac{\mathbb{P}(B \mid A) \mathbb{P}(A)}{\mathbb{P}(B)}$
© Chris Mack, 2014 Online Review Course of Undergraduate Probability and Statistics

Summary of Equations
Random Variables PMF and PDF

Discrete RV
Continuous RV
$\mathbb{P}(a \leq X \leq b)=\sum_{a \leq x \leq b} p_{X}(x) \quad \mathbb{P}(a \leq X \leq b)=\int_{a}^{b} f_{X}(x) d x$

$$
\sum_{\text {all } k} p_{X}(k)=1
$$

$$
\int_{-\infty}^{\infty} f_{X}(x) d x=1
$$

$F_{X}(x)=\mathbb{P}(X \leq x)=\sum_{\text {all } k \leq x} p_{X}(k)$

$$
F_{X}(b)=\int_{-\infty}^{b} f_{X}(x) d x
$$

© Chris Mack, 2014

$$
f_{X}(x)=\frac{d F_{X}(x)}{d x}
$$

Summary of Equations

Expectation and Variance

Discrete:
$E[X]=\sum_{\text {all } x} x p_{X}(x) \quad \operatorname{var}[X]=\sum_{\text {all } x}(x-E[X])^{2} p_{X}(x)$

Continuous:
$E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x \quad \operatorname{var}[X]=\int_{-\infty}^{\infty}(x-E[X])^{2} f_{X}(x) d x$
© Chris Mack, 2014 Online Review Course of Undergraduate Probability and Statistics

Summary of Equations

Bernoulli Random Variable

- Consider a coin toss that produces a head (success) with probability p
$X=\left\{\begin{array}{l}1 \text { if heads (success) } \\ 0 \text { if tails (failure) }\end{array} \quad p_{X}(k)=\left\{\begin{array}{cc}p & \text { if } k=1 \\ 1-p & \text { if } k=0\end{array}\right.\right.$

$$
E[X]=\sum_{\text {all } x} x p_{X}(x)=p
$$

$\operatorname{var}[X]=\sum_{\text {all } x}(x-E[X])^{2} p_{X}(x)=p(1-p)$
© Chris Mack, 2014 Online Review Course of Undergraduate Probability and Statistics

Summary of Equations

Geometric Distribution

- How many coin tosses are required before the first heads (success) comes up?
- Let $\mathrm{X}=$ number of tosses to get the first head

$$
\begin{gathered}
p_{X}(k)=(1-p)^{k-1} p \\
E[X]=1 / p \\
\operatorname{var}[X]=(1-p) / p^{2}
\end{gathered}
$$

© Chris Mack, 2014
ummary of Equations

Poisson Distribution

- Consider the Binomial distribution when $\mathrm{n} \gg \mathrm{k}$
- More specifically, let $n \rightarrow \infty$ while keeping $n p=\lambda=$ constant

$$
\begin{gathered}
p_{X}(k)=\frac{\lambda^{k}}{k!} e^{-\lambda} \\
E[X]=\lambda \\
\operatorname{var}[X]=\lambda
\end{gathered}
$$

© Chris Mack, 2014
Online Review Course of Undergraduate Probability and Statistics
Summary of Equations

Binomial Distribution

- Repeat a Bernoulli trial n times ($p=$ probability of success), $X=$ number of successes

Summary of Equations

Continuous Uniform PDF

- Uniform pdf between a and b, zero outside this range

$$
\begin{gathered}
f_{X}(x)=\left\{\begin{array}{cc}
1 /(b-a) & a \leq x \leq b \\
0 & \text { otherwise }
\end{array}\right. \\
E[X]=\int_{-\infty}^{\infty} x f_{X}(x) d x=\frac{b+a}{2} \\
\operatorname{var}[X]=\int_{-\infty}^{\infty}(x-E[X])^{2} f_{X}(x) d x=\frac{(b-a)^{2}}{12}
\end{gathered}
$$

$$
\text { © Chris Mack, } 2014 \text { Online Review Course of Undergraduate Probability and Statistics }
$$

© Chris Mack, 2014 Online Review Course of Undergraduate Probability and Statistics

Summary of Equations

Normal Distribution

- Also called the Gaussian distribution

$$
\begin{gathered}
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}=N\left(\mu, \sigma^{2}\right) \\
F_{X}(x)=\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x-\mu}{\sqrt{2} \sigma}\right)\right]
\end{gathered}
$$

$$
E[X]=\mu
$$

$$
\operatorname{var}[X]=\sigma^{2}
$$

© Chris Mack, 2014

Summary of Equations

Sampling Distribution of the Mean

$$
\begin{aligned}
& \bar{X}=\frac{1}{n} \sum_{i=1, n} X_{i} \quad E[\bar{X}]=\mu \quad \operatorname{var}[\bar{X}]=\frac{\sigma^{2}}{n} \\
& Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1) \quad \text { or } \quad \text { Student's } t=\frac{\bar{X}-\mu}{S / \sqrt{n}}
\end{aligned}
$$

Confidence Interval:
$\bar{x}-t_{\alpha / 2} \frac{s}{\sqrt{n}}<\mu<\bar{x}+t_{\alpha / 2} \frac{s}{\sqrt{n}} \quad s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
© Chris Mack, 2014 Online Review Course of Undergraduate Probability and Statistics 13

Summary of Equations

Independent and Pooled Samples

- Two independent samples ($\bar{X}_{1}, \mathrm{~S}_{1}$) and ($\bar{X}_{2}, \mathrm{~S}_{2}$):

$$
E\left[\overline{X_{1}}-\overline{X_{2}}\right]=\mu_{1}-\mu_{2} \quad \operatorname{var}\left[\overline{X_{1}}-\overline{X_{2}}\right]=\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}
$$

- Pooled Samples:

$$
\begin{align*}
& \qquad \begin{array}{l}
\operatorname{var}\left[\overline{X_{1}}-\overline{X_{2}}\right]=\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}=S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \\
s_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)} \quad\left(\mathrm{DF}=n_{1}+n_{2}-2\right) \\
\text { ©Chris Mack, 2014 } \quad \text { Online Review Course of Undergraduate Probability and Statistics }
\end{array}
\end{align*}
$$

Summary of Equations

Sampling Distribution of the Variance

- For $X_{\mathrm{i}} \sim N\left(\mu, \sigma^{2}\right) \quad \chi^{2}=\frac{(n-1) S^{2}}{\sigma^{2}}$

$$
E\left[\chi^{2}\right]=n-1 \quad \operatorname{var}\left[\chi^{2}\right]=2(n-1)
$$

Confidence Interval:

$$
\frac{(n-1) s^{2}}{\chi_{\alpha / 2}^{2}}<\sigma^{2}<\frac{(n-1) s^{2}}{\chi_{1-\alpha / 2}^{2}}
$$

Summary of Equations

Linear Regression

- Model: $E[Y \mid X]=a X+b, y_{i}=a x_{i}+b+\epsilon_{i}$

$$
\begin{array}{cc}
r=\frac{\operatorname{cov}(X, Y)}{\sqrt{\operatorname{var}(X) \operatorname{var}(Y)}} & R^{2}=r^{2}=1-\frac{\operatorname{var}(\epsilon)}{\operatorname{var}(Y)} \\
a=\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)} & b=E[Y]-a E[X]
\end{array}
$$

$$
\operatorname{cov}(x, y)=E[(X-E[X])(Y-E[Y])]=E[X Y]-E[X] E[Y]
$$

$$
\text { © Chris Mack, } 2014 \text { Online Review Course of Undergraduate Probability and Statistics }
$$

\qquad

Summary of Equations

Linear Regression Estimators

$$
\begin{aligned}
& r=\frac{1}{n-1} \sum_{i=1}^{n} z_{x i} z_{y i}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{(n-1) s_{x} s_{y}} \\
& \operatorname{cov}(x, y)=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{(n-1)} \\
& a=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \quad b=\bar{y}-a \bar{x} \\
& S S E=\sum_{i=1}^{n} \epsilon_{i}^{2} \quad S_{\epsilon}^{2}=\frac{S S E}{n-2} \\
& \text { © Chris Mack, } 2014 \text { Online Review Course of Undergraduate Probability and Statistics }
\end{aligned}
$$

Summary of Equations
Uncertainty of Linear Regression Fit For $\epsilon_{i} \sim N\left(0, \sigma_{\epsilon}^{2}\right)$

$$
\begin{array}{ll}
\operatorname{var}(a)=\frac{\operatorname{var}(\epsilon)}{n \operatorname{var}(X)} & \hat{y}_{i}=a x_{i}+b \\
\operatorname{DF}=\mathrm{n}-2
\end{array}
$$

