TEXAS	Whar shars mert cmunces the womio	
Online Review Course of Undergraduate Probability and Statistics		
Review Lecture 4		
Probability, part 1		
Chris A. Mack Adjunct Associate Professor		
Course Website: www.lithoguru.com/scientist/statistics/review.html		
© Chis Mack, 2014		

TEXAS	

Probability

- Probability Theory - a mathematical framework for reasoning about uncertainty
- Most engineering problems are solved as if they were deterministic (the same inputs always give the same output)
- Real life is messy. Two possibilities:
- Randomness adds uncertainty to our deterministic solution; or
- Randomness dominates the outcome

TEXAS	what stant hera chnocts the wotio

Frequentist View

- Q: Given a coin of unknown fairness, how would you estimate the probability of getting a "head"?
- A: Flip the coin a large number of times (N). Count the number of heads (H). Then,

$$
\mathrm{P}(H) \cong \frac{H}{N} \quad \text { (weak law of large numbers) }
$$

- Assumes that each trial results in independent, identically distributed outcomes
- But, what does it mean to discuss the probability of a unique event (e.g., what is the probability of ocean levels rising more than 50 cm by 2100?)
© Chis Mack, 2014

TEXAS
 what shars ybrt chances the womo

Elements of a Probabilistic Model

- Sample Space (Ω)
- The set of all possible outcomes of an experiment
- Probability Law (P)
- Assigns a non-negative number to each event of interest
- Any useful probability law will follow Kolmogorov Axioms of Probability
- We'll ignore many mathematical details

TEXAS

 what smans nere chnocts the worio
Sample Space (Ω)

- The set of all possible outcomes of an experiment
- experiment: the underlying process that will produce exactly one result
- Sample space may be discrete (finite or countably infinite) or continuous
- Outcomes must be distinct and mutually exclusive
- Sample space must be collectively exhaustive

TEXAS

Probabilistic Law

- A probabilistic law assigns a number to each event of interest
$-P(E)=$ probability that event E will happen
- A very common approach is to first assign probabilities to each outcome in Ω
- For $p_{i}=$ probability of outcome i,

$$
\mathrm{P}(E)=\sum_{\text {all outcomes in } E} p_{i}
$$

TEXAS What starts herl chavas the worio

Axioms of Probability

- All valid probability laws must obey the Axioms of Probability (Kolmogorov Axioms)
- Non-negativity: $\mathrm{P}(\mathrm{E}) \geq 0$ for all E
- Normalization: $P(\Omega)=1$
- Additivity: for any sequence of disjoint events E_{i}

$$
\mathrm{P}\left(\bigcup_{i=1}^{n} E_{i}\right)=\mathrm{P}\left(E_{1}\right)+\mathrm{P}\left(E_{2}\right)+\cdots+\mathrm{P}\left(E_{n}\right)
$$

Recall: disjoint = mutually exclusive
© Chris Mack, 2014

TEXAS

Probability Identities

- Given any probability law that obeys the probability axioms,
$-P(\varnothing)=0$
$-\mathrm{P}\left(E^{c}\right)=1-\mathrm{P}(E)$
$-\mathrm{P}(E) \leq 1$
- If $E \subset F$ then $\mathrm{P}(E) \leq \mathrm{P}(F)$
$-\mathrm{P}(E \cup F)=\mathrm{P}(E)+\mathrm{P}(F)-\mathrm{P}(E \cap F)$
-Can you prove these?

TEXAS
 mar smars wres cunces we woul

Applying Probability

- When mapping the real world to a probabilistic model, we have choices
- We pick the sample space based on how we define our experiment
- We define our probability law (constrained by the axioms of probability)
- We judge the resulting probabilistic model by its usefulness

Review \#4: What have we learned?

- Explain the frequentist view of probability
- What are the two elements of a probabilistic model?
- What are the defining properties of a sample space?
- Define disjoint sets, a subset, a partition, and the complement of a set
-What are the three probability axioms?

