

TEXAS

Discrete Uniform Probability

- Consider a discrete finite sample space of size N
- The probability law can be completely defined by defining the probability of each outcome
- For a uniform probability (e.g., random selection), the probability of each outcome must be $1 / \mathrm{N}$ (called the "classical probability concept")
- Thus, for any event $E, \begin{aligned} & \text { Determining probabilities } \\ & \text { is now a a counting problem }\end{aligned}$

$$
\mathbb{P}(E)=\frac{\# \text { elements in } E}{N}=\frac{|E|}{|\Omega|} \underset{\substack{\text { Called the } \\ \text { cardinalit } \\ \text { of the set }}}{\substack{\text { ser }}}
$$

TEXAS

Counting Example

- You choose between doing homework in one of your three classes or going to one of four movies
-Sum rule: there are 7 options
- You choose between doing homework in one of your three classes and going to one of four movies
- Product Rule: there are 12 options

Stage Counting Method

- Break the counting problem into r independent stages
- Stage 1: there are n_{1} options
- Stage 2: there are n_{2} options
- Etc.
- Using the product rule, the total number of options is $\mathrm{n}_{1} \mathrm{n}_{2} \ldots \mathrm{n}_{\mathrm{r}}$

TEXAS

Counting Example 1

- How many phone numbers are there in the 512 area code?
-Stage 1, pick the first number: $\mathrm{n}_{1}=8$
-Stage 2, pick the second number: $\mathrm{n}_{2}=10$
-...
-Stage 7, pick the last number: $\mathrm{n}_{7}=10$
- Multiply all the stage counts:
$-n_{\text {total }}=8 \cdot 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10=8$ million

Counting Example 2

- For license plates made with three letters followed by three numbers, how many are possible?
$-n_{\text {total }}=26 \cdot 26 \cdot 26 \cdot 10 \cdot 10 \cdot 10=17,576,000$
- Note: order matters! ABC123 is a different license plate from CAB321
- This is an example of a string: orderings with repetitions allowed

Counting Example 3

- For a set with n elements, how many subsets are possible?
-Stage 1 , is element 1 in the subset? $n_{1}=2$
- Stage 2 , is element 2 in the subset? $\mathrm{n}_{2}=2$
- ...
- Total number of possible subsets $=2^{n}$

Counting Example 4

- How many different ways can you line up five people for a photograph?
- Stage 1, pick a person from the group and put them first in the line: $\mathrm{n}_{1}=5$
-Stage 2, pick the second person for line, $\mathrm{n}_{2}=4$
- Stage 3, pick the third person for line, $n_{3}=3$
- Etc.

TEXAS

K-Permutations

- How many different ways can you line up 3 people, selected from a group of 8 ?
- Stage 1, pick a person from the group and put them first in the line: $n_{1}=8$
- Stage 2, pick the second person, $\mathrm{n}_{2}=7$
- Stage 3, pick the third person, $n_{3}=6$
- Multiply all the stage counts: $n_{\text {total }}=8 \cdot 7 \cdot 6=8!/ 5$!
- How many different sequences are possible selecting k out of a set of n ?
$-n_{\text {total }}=5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=5$!
- This is an example of orderings without repetitions (replacements), also called permutations
$-n_{\text {total }}=n!/(n-k)!={ }_{n} P_{k}$

Combinations - When Order

 Doesn't Matter- How many different subsets are possible when selecting k elements out of a set of n ?
- Order doesn't matter
- There is no replacement
- Define the symbol for this number of combinations (read as "n choose k"): $\binom{n}{k}$
- We can derive the answer by using a twostep derivation of the k-permutations result

Combinations

- Two-stage derivation of k-permutations
- Stage 1, pick a k-subset: $\mathrm{n}_{1}=\binom{n}{k}$
- Stage 2, order the k elements, $n_{2}=k$!
- Multiply, ${ }_{n} \mathrm{P}_{\mathrm{k}}=\binom{n}{k} k$!
- But we already know the answer for the number of k-permutations, so solve for $\binom{n}{k}$:

$$
\binom{n}{k}=\frac{{ }_{n} P_{k}}{k!}=\frac{n!}{k!(n-k)!}
$$

TEXAS

Counting Example 5

- How many different 5 -card poker hands are there?
- Drawing without replacement
- Order doesn't matter
$-n=52, k=5$
- Calculate " 52 choose 5":
$\binom{52}{5}=\frac{52!}{5!(52-5)!}=\frac{52 \cdot 51 \cdot 50 \cdot 49 \cdot 48}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}=2,598,960$

TEXAS

Combinatorics

- Draw k from a set of n with replacement
- Order matters: simple product rule $=\mathrm{n}^{\mathrm{k}}$
- Order doesn't matter: $\mathrm{n}^{\mathrm{k} / k}$!
- Draw k from a set of n without replacement
- Order matters: k-permutations $=n!/(n-k)$!
- Order doesn't matter: Combinations $=\binom{n}{k}$
- General problem: break it into stages where each stage is one of the above types

TEXAS

Review \#5: What have we learned?

- Under what circumstances does a probability law turn into merely a counting problem?
- Define the sum rule and the product rule
- What is the stage counting method?
- What is the difference between a permutation and a combination?
- What does "drawing with replacement" mean?

