

- possible?
- $-n_{total} = 26 \cdot 26 \cdot 26 \cdot 10 \cdot 10 \cdot 10 = 17,576,000$
- Note: order matters! ABC123 is a different license plate from CAB321
- This is an example of a string: orderings with repetitions allowed

Combinations – When Order Doesn't Matter

- How many different subsets are possible when selecting k elements out of a set of n?
 - Order doesn't matter
 - There is no replacement
 - Define the symbol for this number of combinations (read as "n choose k"): $\binom{n}{k}$
- We can derive the answer by using a twostep derivation of the k-permutations result

© Chris Mack, 2014

THE UNITARIAN OF THE WORLD OF WHAT STARTS HERE CHANGES THE WORLD
Review #5: What have we learned?
Under what circumstances does a probability law turn into merely a counting problem?
Define the sum rule and the product rule
 What is the stage counting method?
 What is the difference between a permutation and a combination?
 What does "drawing with replacement" mean?
© Chris Mack, 2014 15