Conditional Probability

- We judge probabilities based on what we know
- What is the probability that Random Person X will develop lung cancer?
- What is the probability that Random Person X will develop lung cancer given that person smokes?
- Let A and B be two events. We define the condition probability of A given B as
$-\mathbb{P}(A \mid B)=$ probability of A given that B has occurred

TEXAS

Conditional Probability

- $\mathbb{P}(A \mid B)=$ probability of A given B
- The A|B event occurs only when both A and B occur. Thus, $\mathbb{P}(A \mid B) \propto \mathbb{P}(A \cap B)$.
- Since we know B has occurred, our new "universe" (effectively our new sample space) will be B
- We can normalize our probabilities for the new "universe" by dividing by $\mathbb{P}(B)$, since we want $\mathbb{P}(A \mid B)$ to obey the axioms of probability

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}
$$

TEXAS

what starts here changes the worto

Total Probability: Divide and Conquer

- Let $A_{1} \ldots A_{n}$ be a partition of the sample space
- Given any event B, these events $A_{1} \ldots A_{n}$ will also partition B

$$
B=\left(A_{1} \cap B\right) \cup\left(A_{2} \cap B\right) \cup \cdots\left(A_{n} \cap B\right)
$$

- By the additivity axiom,
$\mathbb{P}(B)=\mathbb{P}\left(A_{1} \cap B\right)+\mathbb{P}\left(A_{2} \cap B\right)+\cdots+\mathbb{P}\left(A_{n} \cap B\right)=\sum \mathbb{P}\left(A_{i} \cap B\right)$
- But, $\mathbb{P}\left(A_{i} \cap B\right)=\mathbb{P}\left(B \mid A_{i}\right) \mathbb{P}\left(A_{i}\right)$
- So,

$$
\mathbb{P}(B)=\sum \mathbb{P}\left(B \mid A_{i}\right) \mathbb{P}\left(A_{i}\right)
$$

(weighted average of conditional probabilities)
© Chris Mack, 2014

TEXAS

Total Probability: Common Partition

- One simple partition is A and A^{c}
- Applying the total probability formula to this partition,

$$
\mathbb{P}(B)=\mathbb{P}(B \mid A) \mathbb{P}(A)+\mathbb{P}\left(B \mid A^{c}\right) \mathbb{P}\left(A^{c}\right)
$$

- This will come in handy frequently

Bayes' Theorem (Rule)

- From the definition of conditional probability we can write $\mathbb{P}(\mathrm{A} \cap \mathrm{B})$ two ways

$$
\begin{aligned}
& \mathbb{P}(A \cap B)=\mathbb{P}(A \mid B) \mathbb{P}(B) \\
& \mathbb{P}(A \cap B)=\mathbb{P}(B \mid A) \mathbb{P}(A)
\end{aligned}
$$

- Combining,

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(B \mid A) \mathbb{P}(A)}{\mathbb{P}(B)} \quad \text { Bayes' Rule }
$$

© Chris Mack, 2014

Bayes' Theorem Example

- Consider a lab test for a disease
- It is 95% effective at detecting the disease
- It has a false positive rate of 1%
- The rate of occurrence of the disease in the general population is 0.5%
- I take the screening test and get a positive result. What is the likelihood I have the disease?

TEXAS

Bayes' Theorem Example (2)

- Carefully define our variables:
- Let T = I tested positive
- Let $\mathrm{D}=\mathrm{I}$ have the disease $\mathbb{P}\left(T \mid D^{c}\right)=0.01$
- We want $\mathbb{P}(\mathrm{D} \mid \mathrm{T})$

$$
\mathbb{P}(D)=0.005
$$

$$
\begin{gathered}
\mathbb{P}(D \mid T)=\frac{\mathbb{P}(T \mid D) \mathbb{P}(D)}{\mathbb{P}(T)}=\frac{\mathbb{P}(T \mid D) \mathbb{P}(D)}{\mathbb{P}(T \mid D) \mathbb{P}(D)+\mathbb{P}\left(T \mid D^{c}\right) \mathbb{P}\left(D^{c}\right)} \\
\mathbb{P}(D \mid T)=\frac{(0.95)(0.005)}{(0.95)(0.005)+(0.01)(0.995)}=0.32
\end{gathered}
$$

TEXAS

Independence

- Two events are said to be independent of each other if

$$
\mathbb{P}(A \mid B)=\mathbb{P}(A) \longleftarrow \quad \text { Can only be } \begin{aligned}
& \text { used if } \mathbb{P}(B): ~
\end{aligned}
$$

- Or, equivalently,

$$
\mathbb{P}(A \cap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

- If A is independent of B, then B is independent of A (symmetrical)
- If A is independent of B, then A is also independent of B^{c}
TEXAS

Independent Trials

- If an experiment involves a sequence of independent but identical stages, we say each stage is an independent trial
- Example: A coin flip produces a head with probability p and a tail with probability (1-p)
- What is the probability of getting the sequence
HHTHTT?
$\mathbb{P}($ HHTHTT $)=\mathbb{P}(H) \mathbb{P}(H) \mathbb{P}(T) \mathbb{P}(H) \mathbb{P}(T) \mathbb{P}(T)=p^{3}(1-p)^{3}$
- What is the probability of getting exactly 3 heads from six coin tosses? (hint: apply total probability rule)
© Chris Mack, 2014

TEXAS

Review \#6: What have we learned?

- Define "conditional probability"
- What is the total probability rule?
- What is the most common application of Bayes' Rule?
- Define "independence"
- Define "independent trial"

