What is a Random Variable?

- Our probabilistic model assigns probabilities to events, which are collections of outcomes from our sample space
- Events, outcomes, and sample spaces are represented mathematically by sets
- In science, we want models that deal with numbers
- Random Variable: a real-valued function of the outcomes of the experiment
$-\Omega \rightarrow \mathbb{R}$ (maps sample space onto the real numbers)
© Chris Mack, 2014

TEXAS

What is a Random Variable?

- Formally,
- Let $\omega \in \Omega, \mathrm{X}(\omega)=x, x \in \mathbb{R}$
- Example
$-\Omega=\{$ all UT students $\}, \mathrm{X}=$ height of randomly selected student
- Discrete versus Continuous random variable
- Option 1: round height measurement to the nearest cm. Result = discrete RV
- Option 2: measure height with infinite precision. Result = continuous RV.

TEXAS

Random Variable Examples

- Examples of random variables
- The number of heads in a sequence of 12 coin tosses
- The sum of two rolls of a die
- The number of coin tosses until the first head is obtained
- The money won or lost in a particular game of chance
- The time required for a text message to travel from sender to receiver
- Discrete and continuous RVs are handled separately
- Similar but slightly different mathematics
TEXAS

Probability Mass Function (PMF)

- For a discrete random variable

$$
\text { PMF of } \mathrm{X} \longrightarrow p_{X}(x)=\mathbb{P}(X=x)
$$

- Ex: Let $\mathrm{X}=$ sum of two six-sided dice

TEXAS

Bernoulli Random Variable

- Consider a coin toss that produces a head (success) with probability p

$$
\begin{gathered}
X=\left\{\begin{array}{l}
1 \text { if heads (success) } \\
0 \text { if tails (failure) }
\end{array}\right. \\
p_{X}(k)= \begin{cases}p & \text { if } k=1 \\
1-p & \text { if } k=0\end{cases}
\end{gathered}
$$

- Used to model many binary-outcome experiments
- Bernoulli trial: $p=$ constant, each trial is independent
© Chris Mack, 2014

Binomial Distribution

- Repeat a Bernoulli trial n times ($p=$ probability of success)
- Let $\mathrm{X}=$ number of successes

$$
p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

- Called the Binomial Distribution
- Assumes $n=$ constant, plus all the assumptions of a Bernoulli trial
- Two parameters: n and p

TEXAS

Poisson Distribution

- Consider the Binomial distribution when $n \gg k$
- More specifically, let $n \rightarrow \infty$ while keeping $n p=\lambda=$ constant

$$
p_{X}(k)=\lim _{n \rightarrow \infty}\binom{n}{k} p^{k}(1-p)^{n-k}=\frac{\lambda^{k}}{k!} e^{-\lambda}
$$

- Called the Poisson Distribution
- Ex: For a solution of concentration C, how many molecules are in a volume V .
- Ans: Poisson with $\lambda=\mathrm{CV}$

TEXAS

Geometric Distribution

- How many coin tosses are required before the first head (success) comes up?
- Let $\mathrm{X}=$ number of tosses to get the first head

$$
p_{X}(k)=(1-p)^{k-1} p
$$

- Called the Geometric Distribution

TEXAS

Functions of RVs

- Functions of random variables are random variables
- Given X and $p_{X}(x)$, and $y=g(x)$, what is $p_{Y}(y)$?

$$
p_{Y}(y)=\sum_{x \mid g(x)=y} p_{X}(x)
$$

(For x and y discrete $R V s$)

TEXAS

Cumulative Distribution Function

- Discrete random variables are characterized by their PMF (probability mass function)

$$
p_{X}(x)=\mathbb{P}(X=x) \quad \sum_{\text {all } x} p_{X}(x)=1
$$

- We define the Cumulative Distribution Function (CDF) of the random variable X as

$$
F_{X}(x)=\mathbb{P}(X \leq x)=\sum_{\text {all } k \leq x} p_{X}(k)
$$

TEXAS

Review \#7: What have we learned?

- Define "random variable"
- Explain the difference between discrete and continuous random variables
- What is the probability mass function?
- What is a Bernoulli trial (and what assumptions apply)?
- Can you explain the binomial, geometric, and Poisson distributions?
- Define "cumulative distribution function"

