

TEXAS

Expectation Value

- Discrete random variables are characterized by their PMF (probability mass function)

$$
p_{X}(x)=\mathbb{P}(X=x) \quad \sum_{\text {all } x} p_{X}(x)=1
$$

- We define the Expectation Value (mean) of the random variable X as

$$
E[X]=\sum_{\operatorname{all} x} x p_{X}(x)
$$

TEXAS

Expectation Value Example

- Let $X=$ sum of two six-sided, fair dice

$p_{X}(2)=1 / 36$
$p_{X}(3)=2 / 36$
$p_{X}(4)=3 / 36$

Etc.
$E[X]=\sum_{\text {all k }} k p_{X}(k)=2\left(\frac{1}{36}\right)+3\left(\frac{2}{36}\right)+4\left(\frac{3}{36}\right)+\ldots$

TEXAS

Uniform Distribution

- Let $X=$ uniformly distributed, N discrete values

$$
\begin{gathered}
p_{X}(x)=1 / N \\
E[X]=\sum_{\operatorname{all} x} x p_{X}(x)=\sum_{i=1}^{N} \frac{x_{i}}{N}
\end{gathered}
$$

- The expectation value for a uniformly distributed random variable is the arithmetic mean of the possible values

TEXAS
Bernoulli Random Variable
- Consider a coin toss that produces a head
(success) with probability p
$X= \begin{cases}1 & \text { if heads (success) } \\ 0 & \text { if tails (failure) }\end{cases}$
$p_{X}(k)=\left\{\begin{array}{cc}p & \text { if } k=1 \\ 1-p & \text { if } k=0\end{array}\right.$
$E[X]=1(p)+0(1-p)=p$

TEXAS
 Variance
 - Discrete random variables are characterized by their PMF (probability mass function)
 $$
p_{X}(x)=\mathbb{P}(X=x) \quad \sum_{\text {all } x} p_{X}(x)=1
$$

- We define the Variance of the random variable X as

$$
\operatorname{var}[X]=\sum_{\text {all } x}(x-E[X])^{2} p_{X}(x)
$$

Bernoulli Random Variable

- Consider a coin toss that produces a head (success) with probability p

$$
\begin{gathered}
X=\left\{\begin{array}{l}
1 \text { if heads (success) } \\
0 \text { if tails (failure) }
\end{array} \quad p_{X}(k)=\left\{\begin{array}{cc}
p & \text { if } k=1 \\
1-p \text { if } k=0
\end{array}\right.\right. \\
E[X]=p \quad \operatorname{var}[X]=\sum_{\text {all } x}(x-E[X])^{2} p_{X}(x) \\
\operatorname{var}[X]=(1-p)^{2}(p)+(0-p)^{2}(1-p)=p(1-p)
\end{gathered}
$$

TEXAS

Binomial Distribution

- Repeat a Bernoulli trial n times ($p=$ probability of success)
- Let $\mathrm{X}=$ number of successes

$$
\begin{gathered}
p_{X}(k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
E[X]=n p
\end{gathered}
$$

$$
\operatorname{var}[X]=n p(1-p) \quad \begin{gathered}
\text { A result of } \\
\text { independent } \\
\text { trials }
\end{gathered}
$$

$$
\text { © Chris Mack, } 2014
$$ trials

TEXAS

Poisson Distribution

- Consider the Binomial distribution when $n \gg k$
- More specifically, let $n \rightarrow \infty$ while keeping $n p=\lambda=$ constant

$$
\begin{gathered}
p_{X}(k)=\frac{\lambda^{k}}{k!} e^{-\lambda} \\
E[X]=\lambda \\
\operatorname{var}[X]=\lambda
\end{gathered}
$$

$$
\begin{gathered}
p_{X}(k)=(1-p)^{k-1} p \\
E[X]=1 / p \\
\operatorname{var}[X]=(1-p) / p^{2}
\end{gathered}
$$

Geometric Distribution

- How many coin tosses are required before the first heads (success) comes up?
- Let $\mathrm{X}=$ number of tosses to get the first head

\qquad

\square 8k.
what starts here changess the worto

Independence

- For all cases,

$$
\begin{gathered}
E[X+Y]=E[X]+E[Y] \\
E[a X+b]=a E[X]+b \\
\operatorname{var}[a X+b]=a^{2} \operatorname{var}[X]
\end{gathered}
$$

- If X and Y are independent random variables

$$
\begin{gathered}
E[X Y]=E[X] E[Y] \\
\operatorname{var}[X+Y]=\operatorname{var}[X]+\operatorname{var}[Y]
\end{gathered}
$$

TEXAS

what starts here changes the worto
Review \#8: What have we learned?

- What is the "expectation value" and how is it calculated for a discrete RV?
- What is the "variance" and how is it calculated for a discrete RV?
- What is the mean and variance of the Bernoulli RV and a binomial distributed RV?
- What is the variance of the sum of two independent random variables?

