TEXAS

Online Review Course of Undergraduate Probability and Statistics

Review Lecture 11 Confidence Intervals

Chris A. Mack
Adjunct Associate Professor
Course Website: www.lithoguru.com/scientist/statistics/review.html
© Chris Mack, 2014

Sampling Distribution of the Mean

- We say that \bar{X} is an estimator for the population mean, and that \bar{x} is a point estimate of the population mean
- We want our estimator to be unbiased (or low bias)
- We want our estimator to have a small variance (standard error)
- An efficient estimator is one that has lower bias and/or smaller variance than another estimator
- Our estimator \bar{X} is unbiased provided our sample is random (each X_{i} is independent), and it is the most efficient
- For a symmetric distribution, the median is an unbiased estimator, but is less efficient than the sample mean

TEXAS

Sampling Distribution of the Mean

- Let $X_{1}, X_{2}, \ldots, X_{\mathrm{n}}$ be iid random variables from an infinite population with mean μ and finite variance σ^{2}.

$$
\bar{X}=\frac{1}{n} \sum_{i=1, n} X_{i} \quad E(\bar{X})=\mu \quad \sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}
$$

- Central Limit Theorem:

$$
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1) \text { as } n \rightarrow \infty
$$

Errors in our Estimate of the Mean

- How large might $\bar{X}-\mu$ get?
- We know by the central limit theorem that for a moderately large sample $Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)$

α	$\mathbf{z}_{\alpha / 2}$
0.10	1.65
0.05	1.96
0.02	2.33
0.01	2.58
OChris Mack, 2014	

TEXAS

Creating a Confidence Interval

- Let's look at the two boundary points, $\pm z_{\alpha / 2}$

$$
\pm z_{\alpha / 2}=\frac{\bar{x}-\mu}{\sigma / \sqrt{n}} \rightarrow \mu=\bar{x} \pm z_{\alpha / 2} \frac{\sigma}{\sqrt{n}}
$$

- The probability that the true mean will fall within this range is $1-\alpha$
- Generally, we approximate σ with s

TEXAS

Interval Estimate of the Mean

- Confidence interval (CI):

$$
\bar{x}-z_{\alpha / 2} \frac{s}{\sqrt{n}}<\mu<\bar{x}+z_{\alpha / 2} \frac{s}{\sqrt{n}}
$$

Confidence Intervals

- Pick the value of α you want
- Do you have a large enough sample so that the sampling interval can be considered normal?
- If yes, use the $z_{\alpha / 2}$ value
- If no, but underlying distribution is normal, use $\mathrm{t}_{\alpha / 2}$ value
- Create the confidence interval
- We are $(1-\alpha) 100 \%$ confident that the true population mean is captured by our interval
- If we ran this experiment 100 times, we expect that our confidence intervals would capture the true mean ($1-\alpha$) 100 of those times
- Every statistic has a confidence interval (not just the mean)

TEXAS

Another Statistic: Proportion

- Proportion estimator
- Sample size $=\mathrm{n}, X_{i}=$ Bernoulli RV
$-X=\sum_{i=1, n} X_{i}=$ binomial RV
Recall from Lecture 8
$\hat{p}=\frac{X}{n} \quad E(\hat{p})=\frac{E(X)}{n}=\frac{n p}{n}=p$
$\operatorname{var}(\hat{p})=\frac{\operatorname{var}(X)}{n^{2}}=\frac{n p(1-p)}{n^{2}}=\frac{p(1-p)}{n}=\frac{p q}{n}$
Standard Error $S E(\hat{p})=\sqrt{\frac{\hat{p} \hat{q}}{n}}$

Another Statistic: Proportion

- Proportion examples:
- What percentage of UT students smoke?
- How many people prefer brand X over brand Y ?
- What fraction of the molecules have reacted?
- With two options, the population will follow a binomial distribution
$-p=$ population proportion (probability) of "success"
$-q=1-p=$ proportion (probability) of "failure"

TEXAS	

Proportion Confidence Intervals

- The binomial distribution can be well approximated with a normal distribution whenever $n p>10$ and $n q>10$
- When this is the case, use $z_{\alpha / 2}$ - Margin of error $=z_{\alpha / 2} S E(\hat{p})$
- Example: $95 \% \mathrm{CI}(\alpha=0.05)$
$-95 \% \mathrm{Cl}=\left(\hat{p}-1.96 \sqrt{\frac{\hat{p} \hat{q}}{n}}, \hat{p}+1.96 \sqrt{\frac{\hat{p} \hat{q}}{n}}\right)$

TEXAS

Review \#11: What have we learned?

- Explain estimator, point estimate, and interval estimate
- Under what conditions can we use the normal approximation for the sampling distribution of the mean?
- Know how to generate a confidence interval for any statistic
- What is the standard error for a proportion estimate?
- Under what conditions can we use the normal approximation for the sampling distribution of the proportion?

