Online Review Course of Undergraduate Probability and Statistics

Review Lecture 16 Linear Regression, part 1

Chris A. Mack
Adjunct Associate Professor
Course Website: www.lithoguru.com/scientist/statistics/review.html

A Linear Model

- Consider two random variables, X and Y. What does it mean to say they are linearly related?
- Approach 1: $Y=a X+b$ (a and b are scalars)
- This model assumes that Y is completely determined by knowing X
- Approach 2: $E[Y \mid X]=a X+b$
- The mean value of Y is controlled by X
- There is some variation in Y that is not controlled by X
- Note: $\mathrm{E}[Y \mid X]$ is called the conditional expectation
- Law of Iterated Expectations: $\mathrm{E}[\mathrm{E}[Y \mid X]]=E[Y]$

A Linear Model

- Our model: $E[Y \mid X]=a X+b$
- Take the expectation of both sides, leading to

$$
-E[Y]=a E[X]+b, \text { or } b=E[Y]-a E[X]
$$

- Find the covariance of X and Y, leading to $-\operatorname{cov}(X, Y)=a \operatorname{var}(X)$, or

$$
a=\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}
$$

TEXAS

 war sams hat cmacs ste womo
A Linear Model

- Our model: $E[Y \mid X]=a X+b$

$$
b=E[Y]-a E[X] \quad a=\frac{\operatorname{cov}(X, Y)}{\operatorname{var}(X)}
$$

- We need estimators for:
$-E[X], E[Y], \operatorname{cov}(X, Y)$, and $\operatorname{var}(X)$
- Example: use the estimators that we have already used
- Are there other estimators?
- Which estimators are the "best"

TEXAS	

Estimators

- Let θ be the parameter and $\hat{\theta}$ be the estimator for that parameter
- What properties do we want our estimator to have?
- Unbiased: $\mathrm{E}[\hat{\theta}]=\theta$
- Minimum variance: make $\operatorname{var}[\hat{\theta}]$ as small as possible
- Robustness: a few bad data points shouldn't completely ruin our estimate
- There are many different estimators for each parameter, with trade-offs of bias, variance, and robustness
- Mean vs. median vs. trimmed mean as estimator for $\mathrm{E}[\mathrm{X}]$ © Chis Mack, 2014

TEXAS

Maximum Likelihood Estimators

- Suppose we run an experiment and get a set of data $x_{1}, x_{2}, \ldots, x_{n}$.
- What value of the parameter maximizes the likelihood of getting that exact data set?
$-\mathrm{P}\left(X_{1}=x_{1} \mid \theta\right), \mathrm{P}\left(X_{2}=x_{2} \mid \theta\right)$, etc.
- If each measurement is independent, the likelihood function is the product of all the probabilities
- To evaluate the likelihood function (and thus maximize it) requires a model for the probabilities

[^0]
TEXAS

 what starts here changess the worlo
Maximum Likelihood Estimator (MLE)

- Example: suppose iid $X_{i} \sim N\left(\mu, \sigma^{2}\right)$
- Let's find the MLE for the mean, μ

$$
\mathbb{P}\left(X_{i}=x_{i} \mid \mu\right)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\left(x_{i}-\mu\right)^{2} / 2 \sigma^{2}}
$$

Likelihood:

$$
\prod_{i=1}^{n} \mathbb{P}\left(X_{i}=x_{i} \mid \mu\right)=\left(\frac{1}{\sqrt{2 \pi} \sigma}\right)^{n} e^{-\sum\left(x_{i}-\mu\right)^{2} / 2 \sigma^{2}}
$$

- Now find the maximum: take derivative wrt μ, set equal to 0 (hint: take the log first, then the derivative)
- Result is the familiar formula for the sample mean

Maximum Likelihood Estimator (MLE)

- Some MLE estimators, assuming iid normal distribution

$$
\begin{gathered}
\hat{\mu}=\frac{1}{n} \sum_{i=1}^{n} x_{i} \quad \widehat{\sigma^{2}}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} \\
\operatorname{cov} \widehat{v(x, y)}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
\end{gathered}
$$

- The MLE estimators for variance and covariance are biased; we often modify them to remove bias
- These estimators are not robust

TEXAS

Least Square Error (LSE)

- Another approach: minimize the square of the difference between the model and the data

$$
\text { Model: } \quad y_{i}=a x_{i}+b+\epsilon_{i}^{\text {residual }}
$$

- This model assumes all uncertainty comes from y (there is no uncertainty in x)
- Now, find the values of a and b that minimize the sum of the squares of the residuals (SSE)

$$
S S E=\sum_{i=1}^{n} \epsilon_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-a x_{i}-b\right)^{2}
$$

TEXAS

Least Square Error (LSE)

- Properties of the LSE solution
$-\sum_{i=1}^{n} \epsilon_{i}=0$
- Unbiased estimator for $\operatorname{var}(\epsilon)$ is $\operatorname{SSE} /(n-2)$
- The LSE estimates of the slope and intercept are exactly the same as the MLE estimates when the data are iid normally distributed
- This is our motivation for least-squares fitting

TEXAS

Review \#16: What have we learned?
-What is our model for a linear regression?

- What four statistical parameters must we estimate in order to find the slope and intercept of our line?
- What is a maximum likelihood estimator?
-What is a least squares estimator?
- When do MLE and LSE give the same answers?

[^0]: Chris Mack, 2014

