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The world is full of variation.  Statistics is a branch of mathematics that seeks to describe the variation that is 
observed, and make inferences about a population from measurements made on a sample.  Populations are 
often very large (sometimes infinitely large), and so samples are often the only practical way of gaining 
insight about the population.  A good sample is representative of the population, so that there is no bias 
between descriptions of the sample and of the population.  But samples have variability, so they always 
provide an imperfect representation of the population.  In statistics, we seek to quantify the uncertainty that 
comes from inferences made about a population from a sample. 
 
When deriving a statistical result, we aim for two important and complementary goals:  reliability and 
generalizability.  Reliability is the consistency (repeatability) of the results should the study or experiment be 
repeated.  Generalizability is the ability to apply the results taken from a sample to the general population 
that the sample represents.  To achieve generalizability we need a sample that is independent and free of bias 
so that it is representative of the population as a whole.  To achieve reliability in a statistical analysis, we 
must make sure that the assumptions that go into the analysis hold true for the data being analyzed. 
 
 
Types of Data 
 
Statistical analysis begins with data.  There are two basic types of data: 

Categorical – counts (number of people or occurrences, for example) that fall within each category.  The 
counts are also called the frequency and can also be expressed as a relative frequency (or proportion). 
Quantitative – the output of a measurement, usually with units, that represents the amount of something. 

 
Additionally, an identifier is a special data type that identifies the subject being measured or counted. 
 
The type of statistical analysis that can be performed depends on the type of data one is analyzing. 
 
 
Descriptive Statistics 
 
Descriptive statistics provides summary values (each one called a statistic) that describe the variation found 
in data.  For categorical data this is usually just the counts or proportions in the various categories, 
sometimes in the form of a contingency table or a bar chart. 
 
For univariate quantitative data, we plot the variation with a histogram, the distribution of data values.  We 
describe this distribution with measures of center (mean or median, for example) and spread (standard 
deviation or interquartile range, for example) and with descriptions of the shape of the distribution (unimodal 
vs. bimodal vs. uniform, symmetric vs. skewed, etc.).  Sometimes we describe such distributions with 
models, such as the normal (Gaussian) model. 
 
A robust statistic is one where one or a few bad data points (called outliers) won’t significantly change the 
value of the statistic.  Median and IQR are robust statistics, but mean and standard deviation are not.  Thus, 
whenever a non-robust statistic is being used, we must always be on the look-out for outliers. 
 
Graphs of the data are an essential part of descriptive statistics. 
 



 
Normal Model 
 
The normal (Gaussian) model of a distribution is so important in statistics that it deserves special attention.  
It is a unimodal and symmetric distribution characterized by two parameters, a mean and a standard 
deviation.  The standard normal model has a mean of 0 and a standard deviation of 1, and we call a statistic 
that has this distribution z.  We often create these z values (also called z-scores) by taking the data and 
subtracting off the mean, then dividing the result by the standard deviation of the sample.  Values for the 
standard normal model are found in tables and readily calculated using spreadsheets and other software.  The 
area under the standard normal curve between two z-scores represents the probability of finding data between 
those z-scores. 
 
 
Inferential Statistics 
 
We often seek to draw conclusions (inferences) about a population from measurements made on a sample.  
The true value of a population parameter is estimated by a statistic that comes from a sample.  The two main 
types of inferences that we make involve determining confidence intervals around the sample statistic and 
performing hypothesis testing on that statistic.   
 
Confidence Intervals – For any statistic that comes from a sample, we can define a confidence interval for 
that statistic:  How confident are we that the true value of the population parameter falls within a certain 
interval around the sample statistic?  This is an expression of our uncertainty in the use of the sample statistic 
to represent the population parameter, and is equal to our best estimate of the population parameter (the 
sample statistic) plus or minus the margin of error. 
 
Hypothesis Testing – What is the probability (called the P-value) that a sample like ours could have come 
about by sample variability given a true null hypothesis?  Comparing this P-value to a predefined 
significance level () allows us to reject, or not, the null hypothesis. 
 
The key to both of these types of inferential statistics is knowing the sampling distribution for the statistic:  If 
many random samples of a given size were collected and the statistic of interest calculated for each, what 
would be the resulting distribution of that statistic?  The standard deviation of the sampling distribution is a 
measure of our uncertainty in the statistic of interest.  We generally estimate the standard deviation of the 
sampling distribution using data from our sample, and that estimate is called the standard error of the 
statistic.  Generally, this standard error is inversely proportional to the square root of the sample size, so that 
larger samples produce less uncertainty (a smaller margin of error).  Often, the sampling distribution is 
thought to be normal thanks to the central limit theorem. 
 
The types of hypothesis testing that can be done depend on the type of data, and the sampling distribution we 
use depends on the specific statistic we are testing.   
 
 
Hypothesis Testing with Quantitative Data (parametric testing) 
 
One-Sample t-Test:  compare the mean of a sample to a hypothesized mean for the population. 

Assumptions:  The sample data are independent of each other (the sample is random and representative, 
and less than 10% of the total population), and the sample is large enough (depends on how nearly 
normal the underlying population is). 

 
Two-Sample t-Test:  compare the means that come from two different, independent samples.   



Assumptions:  The data within each sample are independent of each other (the sample is random and 
representative, and less than 10% of the total population), the two samples are independent of each 
other, and each sample is large enough (depends on how nearly normal the underlying population is). 

 
Paired Sample t-Test:  compare the mean difference between paired sample data to a hypothesized mean 
difference for the population.  A common example is a before-and-after test. 

Assumptions:  The data within each sample are independent of each other (the sample is random and 
representative, and less than 10% of the total population), the two samples are uniquely paired so that 
the difference has meaning, and the sample is large enough (depends on how nearly normal the 
underlying population is). 

 
In all of these tests, the sample size must be “large enough” to invoke the central limit theorem so that the 
sampling distribution of the mean can be assumed to be normal.  If the underlying population is very nearly 
normal, “large enough” is typically 15 – 20.  If the underlying population is slightly to moderately skewed, 
40 – 50 data points per sample will be required.  For heavily skewed or bimodal populations, much larger 
data sets will be required. 
 
Statistics cannot guarantee certainty.  Conclusions from an hypothesis test can be wrong in two ways:  a 
Type I error (rejecting a true null hypothesis) and a Type II error (failing to reject a false null hypothesis). 
 
 
Hypothesis Testing Procedure 
 
All of the various hypothesis tests that we have used employ the same basic procedure.  They all seek to 
answer this specific question:  What is the probability that a sample like this one (or one even more unusual 
than this one) could have come about by sample variability given a true null hypothesis?  If the probability is 
too low, we reject the null hypothesis.  If the probability is high enough, we can’t reject the null hypothesis. 
 
Step 0:  Plot the data 

This step is especially important for two-sample t-tests and ANOVA, where boxplots are compared. 
 
Step 1:  Check assumptions 

The specific assumptions depend on the test being done.  All assumptions should be carefully checked, and 
for quantitative data histograms of the data are required. 
 
Step 2:  Write the null and alternate hypotheses 

The null hypothesis is generally of the form: Ho:  parameter = value 
The alternate hypothesis can take one of three forms: HA:  parameter ≠ value 
 HA:  parameter > value 
 HA:  parameter < value 
 
For the 2 and ANOVA tests, a one-tail test is always used (and there is no options with regard to the 
alternate hypothesis).  For proportion and mean tests, the alternate hypothesis looking only for a difference in 
the parameter value (HA:  parameter ≠ value) requires a two-tail test, while the other alternate hypotheses use 
a one-tail test. 
 
Step 3:  Pick a significance level () 



The default is generally  = 0.05, but feel free to change to a different significance level if needed.  The 
significance level is the probability of a Type I error (rejecting a true null hypothesis). 
 
Step 4:  Calculate the P-value 

The calculation steps here are dependent on the specific test being used, but in general we start by calculating 
the appropriate test statistic (z for a proportion test, t for a t-test of means, 2 for a chi-square test, and F-ratio 
for ANOVA).  Then, using the appropriate probability distribution, turn the test statistic into a P-value (the 
probability of getting data like this, or even more unusual than this, given a true null hypothesis). 
 
Step 5:  Form a conclusion about your hypotheses 

If P-value < , reject Ho in favor of the alternate hypothesis.  If P-value > , we fail to reject Ho. 
 
Step 6:  If the null hypothesis is rejected, perform additional analysis 

Rejecting the null hypothesis means that we have found an effect.  We usually wish to put a confidence 
interval around our estimate of the size of this effect and/or perform an effect size test (such as the Cohen’s d 
for t-tests and 2 for ANOVA).  For ANOVA, rejecting the null hypothesis means we will also want to 
perform a Scheffe post hoc test to find which mean(s) are different from the others. 
 
 
Regression Analysis 
 
We often look for relationships between variables.  A scatterplot displays the relationship between two 
quantitative variables, and the Pearson correlation coefficient measures the strength of their linear 
association.  A regression is a method of finding the ‘best’ fit of a model to a set of data.  A least-squares 
linear regression finds the best-fit line through a set of data under the assumptions that the trend really is 
linear and that the resulting residuals (data value minus predicted value) are normally distributed with a 
homogeneous variance.  Since least-squares regression is not robust, the results are only valid if there are no 
outliers.  Note that correlations in and of themselves do not imply causation. 
 
 
The Big Mistakes in Statistics 
 
Unfortunately, there are certain errors in performing statistical analysis or interpreting statistical results that 
are far too common.  Here is a list of the most common errors in the use of statistics. 
 

1. Not properly checking all assumptions inherent to the statistical test being applied. 
2. Assuming that all errors are random (and thus ignoring the possibility of systematics errors in 

measurements or sample bias). 
3. Assuming normally distributed data, but not checking the assumption. 
4. Using non-robust estimators and statistics without using a reliable procedure for detecting and 

dealing with outliers. 
5. Confusing statistical significance with importance of the effect. 
6. Using a test with low power for the desired effect size, so that the null hypothesis is rarely rejected. 
7. Trolling for effects:  given enough variables, correlations will always be found, whether they exist or 

not. 
 


