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In this paper a systematic approach to calibrating resist parameters will be provided.  The
calibration procedure couples nonlinear least squares fitting algorithms with a lithography
simulator to achieve the best match between lithographic data and simulation. The importance of
calibrating resist parameters using multiple data sets to achieve a unique and predictive model
will be discussed.  Several examples will be given for chemically amplified resists.

1. Introduction
For many applications, lithography simulation

has proven extremely effective at predicting or
explaining important lithographic trends,
providing insight and direction for problem
solving, and extrapolating lithographic technology
into the future.  For some applications, however,
the usefulness of lithography simulation depends
on its ability to quantitatively match experimental
results for a specific process.

When simulation and experiment do not match,
there are three possible reasons.  First, the
experimental results could be wrong due to setup,
process, and/or measurement errors.  Second, the
models used in the simulator may not adequately
describe the physical realities present in the
experiment.  And third, the input parameters used
for the simulation may not adequately describe the
experimental conditions.  Of these three, incorrect
input parameters is by far the most common
source of simulation to experiment mismatch in
optical lithography modeling.

Over the past decade fairly accurate physical
models have been developed to describe
chemically amplified resist processing.
Unfortunately, these models have up to 25
physical parameters.  Every parameter must be set
to the appropriate value or errors in the
simulations may result.  Most semiconductor
manufacturing facilities do not have the
specialized capability to measure each parameter
individually and therefore rely on resist vendors,
universities, or other sources for resist parameters.
Also, because of process (developer temperature,

etc.) and tool variability (dose calibration, film
thickness methods, etc.) some of the known resist
parameters do not transfer perfectly from one
facility to another.  Therefore, parameters
measured at a resist vendor’s site often must be
calibrated before simulation results can be
obtained that match processes elsewhere.  The
purpose of this work is to show how users of
lithography simulation tools can calibrate resist
parameters for a given resist using standard
lithographic data obtained from the target
manufacturing process and toolset.

Recently, a systematic approach to matching
simulation to experiment for a given process,
called “tuning” the model, was proposed [1-3].
This approach was based upon the systematic but
manual adjustment of individual parameters to
match certain prescribed experiments.  It is
reliable for only a few of the resist model
parameters.  Subsequently, the number of
different dataset types and adjustable parameters
was expanded by the implementation of numerical
algorithms to perform the tuning process [4].  In
this paper, the approaches described earlier will be
expanded.  A systematic approach to calibrating
specific parameters for chemically amplified
resists will be provided.  Very importantly, the
ability of a simulator to match multiple sets of
experimental data (different numerical apertures,
multiple pitches, different feature types, etc.) with
one set of simulation parameters enables many
important applications of simulation that go
beyond trend analysis.  In this paper, the ability to
match multiple data sets will be explored under a
wide range of conditions.



2. Model Calibration Procedure
The systematic and automated calibration of

simulation parameters requires adoption of a
metric that measures the agreement between
experimental and simulation data as well as the
algorithms that improve the agreement with data
for a given set of simulation parameters.  The
standard approach is to use the chi-squared (χ2)
function to determine the “goodness of fit”
connecting real and modeled data.  χ2 is expressed
as

2

1

2 )a,(
)( ∑

=







 −
=

N

i i

ii xyy
σ

χ a
(1)

where N = number of data points,
{yi,xi} = the experimental data set

y = predicted value
a = the simulation parameter set

σi = the uncertainty between yi and
the true data point.

The goal is to minimize χ2, which in turn
equates to better agreement between real and
simulated data.  The methods introduced in the
previous work [4] minimize the merit function in
equation (1) using standard nonlinear optimization
algorithms and a lithography simulation package
to calculate the predicted value y(xi,a).  An
acceptable solution is found when the RMS
deviation between the simulation and
experimental data is on the order of or less than
the expected noise in the experimental dataset.

When fitting a single dataset such as an FE
matrix for a single feature size and pitch it is
observed that typically more than one acceptable
solution exists.  This is a result of the dataset not
sampling enough parameter space to distinguish
the multiple solutions.  An error can then arise
when the resulting “calibrated” model is applied
to another input condition (e.g., a different pitch
or stepper setting).  The model calibration is
under-determined for the range of data sampled.
This situation is analogous to fitting a straight line
through a single point or several closely spaced
but noisy data points. More data points covering a
larger range must be added to determine the
unique model parameters describing the given
process with reasonable certainty.

This problem is illustrated for lithography
simulation in Figures 1 and 2.  In Figure 1 the
Focus-Exposure data for an isolated line is shown
with a simulation of the process using modeling
parameters calibrated using only this dataset.  The
agreement between the simulation and
experimental data is good considering the
expected repeatability of the data.  Unfortunately,
when this set of parameters is used to simulate a
dense feature image with the same resist and
compared to experiment the result is shown in
Figure 2.  As can be seen the simulation has
considerable mismatch with the experimental data
(especially for low doses).  By calibrating to more
than one dataset this problem can be alleviated.

Figure 1: Comparison of isolated line
experimental Focus-Exposure data with
simulation results using parameters calibrated
using only this dataset.

Figure 2: Comparison of 180 dense line
experimental focus-exposure data with simulation
results using parameters calibrated from the
isolated line data of Figure 1.



3. Tuning Examples
In this section two examples of resist model

calibration are demonstrated using coupled fits of
Focus Exposure matrix data for isolated and dense
features.  The first example demonstrated is for
the JSR KrF resist M91Y.

The lithographic data was obtained using a
0.63NA KrF stepper and 0.8/0.4 annular
illumination.  The mask was a chrome on quartz
binary mask.  The isolated features were 300nm
(wafer dimension) and the dense features were
180nm/360nm pitch.  Both PAB and PEB
temperatures were 130°C for 90s.  The substrate
used was an optimized inorganic ARC stack.  The
resist thickness was 415nm.

For calibration the optical parameters were
fixed at A = 0, B = 0.9µm-1, n = 1.78.  These
parameters were obtained from a separate
calibration using CD swing curve data.  The base
quencher loading was also fixed at 0.1 relative to
the PAG loading.  Because the PEB temperature
was held fixed the activation energy parameters
for diffusivity and deprotection were held constant
at 25.869 kcal/mol and not adjusted.  The develop
model was chosen to be the Original Mack model
with Rmax = 1090nm/s, Rmin = 0.11nm/s, and mth =
0.67.

Selecting the correct resist parameters to
calibrate is an important first step.  The
parameters chosen for calibration were acid yield
C, Diffusion Coefficient pre-exponential ln(ArD),
Deprotection Rate pre-exponential ln(Ara) and
Develop Contrast Rn.  These parameters are the
standard set of parameters most commonly used
for calibrating to FE matrix data from chemically
amplified resists.  The initial values were C =
0.07cm2/mJ, ln(ArD) = 36.0, ln(Ara) = 27.8 and Rn

= 8.0, which yield the results shown in Figures 1
and 2.

By simultaneously minimizing the combined χ2

of the fit to both data sets (dense and isolated
features), multiple data set tuning was achieved.
The final optimized parameters obtained were C =
0.043, ln(ArD) = 35.62, ln(Ara) = 29.0 and Rn =
15.65.  The resulting agreement between
simulation and experiment for both datasets is
quite good as shown in Figures 3 and 4.

Figure 3: Comparison of experimental Focus-
Exposure data with the multi-data set calibrated
simulation results for 300nm isolated lines using
M91Y photoresist.

Figure 4: Comparison of experimental Focus-
Exposure data with the multi-data set calibrated
simulation results for 180nm nested lines using
M91Y photoresist.

The second calibration example using multiple
datasets involved the Shipley trench/contact hole
KrF resist UV210.  The lithographic data was
obtained using a 0.7NA KrF stepper and 0.85
sigma partially coherent illumination.  The mask
was a chrome on quartz binary mask.  The
isolated features were 160nm (wafer dimension)
trenches and the dense features were 160nm
trenches at 320nm pitch.  Both PAB and PEB
temperatures were 130°C for 90s.  The substrate
used was Shipley organic ARC AR2 on silicon.
The resist thickness was 393nm.



When calibrating a new resist, a common
approach is to start with parameters from a similar
resist.  In this case, the optical parameters were
initially fixed at A = 0, B = 0.5, n = 1.746, values
previously measured for UV6, a similar resist
manufactured by Shipley.  The base quencher
loading was also fixed at 0.16 relative to PAG.
As with the M91Y case the activation energy
parameters were held constant.  The develop
model was chosen to be the Original Mack model
with Rmax = 4050nm/s, Rmin = 0.4nm/s, and mth =
0.6.  These values are similar to those found for
UV6.

The parameters originally chosen for calibration
were acid yield C, Diffusion Coefficient pre-
exponential ln(ArD), Deprotection Rate pre-
exponential ln(Ara) and Develop Contrast Rn.  The
initial values were C = 0.063, ln(ArD) = 33.0,
ln(Ara) = 27.0 and Rn = 23.0.  After calibration
failed to yield reasonable agreement for both
datasets simultaneously the absorbance parameter
B was allowed to fluctuate from its initial guess of
0.5µm-1.

With this change the calibration converged to a
satisfactory solution as shown in Figures 5 and 6.
The final optimized parameters obtained were C =
0.0375, ln(ArD) = 31.55, ln(Ara) = 27.023, Rn =
34.4 and B = 0.38.

Figure 5: Comparison of experimental Focus-
Exposure matrix CD data with the multi-data set
calibrated simulation results for 160nm isolated
trenches using UV210 photoresist and the process
conditions given in text.

Figure 6: Comparison of experimental Focus-
Exposure matrix CD data with the multi-data set
calibrated simulation results for 160nm dense
trenches using UV210 photoresist and the process
conditions given in text.

4. Conclusions
As has been shown, resist parameters can be

calibrated using measured lithographic data.
However, the quantitative predictive capability of
any set of parameters calibrated from a single
dataset is suspect.  It is important to use several
datasets that sample different regions of parameter
space.  A good start is to use both isolated and
dense feature Focus–Exposure data to calibrate
the resist model.
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