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In this paper a systematic approach to calibrating resist parameters will be provided. The
calibration procedure couples nonlinear least squares fitting agorithms with a lithography
simulator to achieve the best match between lithographic data and ssimulation. The importance of
caibrating resist parameters using multiple data sets to achieve a unique and predictive model
will be discussed. Several examples will be given for chemically amplified resists.

1. Introduction

For many applications, lithography smulation
has proven extremely effective at predicting or
explaining  important  lithographic  trends,
providing insight and direction for problem
solving, and extrapolating lithographic technology
into the future. For some applications, however,
the usefulness of lithography simulation depends
on its ability to quantitatively match experimental
results for a specific process.

When simulation and experiment do not match,
there are three possible reasons.  First, the
experimental results could be wrong due to setup,
process, and/or measurement errors.  Second, the
models used in the smulator may not adequately
describe the physical redlities present in the
experiment. And third, the input parameters used
for the smulation may not adequately describe the
experimental conditions. Of these three, incorrect
input parameters is by far the most common
source of simulation to experiment mismatch in
optical lithography modeling.

Over the past decade fairly accurate physical
models have been developed to describe
chemicdly  amplified resist  processing.
Unfortunately, these modds have up to 25
physical parameters. Every parameter must be set
to the appropriate vaue or errors in the
smulations may result. Most semiconductor
manufacturing facilities do not have the
speciaized capability to measure each parameter
individually and therefore rely on resist vendors,
universities, or other sources for resist parameters.
Also, because of process (developer temperature,

etc.) and tool variability (dose calibration, film
thickness methods, etc.) some of the known resist
parameters do not transfer perfectly from one
facility to another. Therefore, parameters
measured at a resist vendor’'s site often must be
calibrated before simulation results can be
obtained that match processes elsewhere. The
purpose of this work is to show how users of
lithography simulation tools can calibrate resist
parameters for a given resst using standard
lithographic data obtained from the target
manufacturing process and tool set.

Recently, a systematic approach to matching
simulation to experiment for a given process,
called “tuning” the model, was proposed [1-3].
This approach was based upon the systematic but
manua adjustment of individual parameters to
match certain prescribed experiments. It is
reliable for only a few of the resist model
parameters. Subsequently, the number of
different dataset types and adjustable parameters
was expanded by the implementation of numerical
algorithms to perform the tuning process [4]. In
this paper, the approaches described earlier will be
expanded. A systematic approach to calibrating
specific parameters for chemically amplified
resists will be provided. Very importantly, the
ability of a simulator to match multiple sets of
experimental data (different numerical apertures,
multiple pitches, different feature types, etc.) with
one set of smulation parameters enables many
important applications of simulation that go
beyond trend analysis. In this paper, the ability to
match multiple data sets will be explored under a
wide range of conditions.



2. Model Calibration Procedure

The systematic and automated calibration of
smulation parameters requires adoption of a
metric that measures the agreement between
experimental and simulation data as well as the
algorithms that improve the agreement with data
for a given set of smulation parameters. The
standard approach is to use the chi-squared €?)
function to determine the “goodness of fit”
connecting real and modeled data. c? is expressed
as

Néy - y(x,a)i* (D)
c2@=8§ :y| y(%i )L'J
i=1e  Si 1]

where N = number of data points,
{yix}= theexperimental data set
y = predicted value
a= thesimulation parameter set
s; = the uncertainty between y; and
the true data point.

The god is to minimize c? which in tun
equates to better agreement between read and
smulated data. The methods introduced in the
previous work [4] minimize the merit function in
equation (1) using standard nonlinear optimization
algorithms and a lithography simulation package
to caculate the predicted vaue y(x,d. An
acceptable solution is found when the RMS
deviation  between the smulation and
experimental data is on the order of or less than
the expected noise in the experimental dataset.

When fitting a single dataset such as an FE
matrix for a single feature size and pitch it is
observed that typically more than one acceptable
solution exists. This is a result of the dataset not
sampling enough parameter space to distinguish
the multiple solutions. An error can then arise
when the resulting “calibrated” modd is applied
to another input condition (e.g., a different pitch
or stepper setting). The modd cdibration is
under-determined for the range of data sampled.
This situation is analogous to fitting a straight line
through a single point or severa closdly spaced
but noisy data points. More data points covering a
larger range must be added to determine the
uniqgue model parameters describing the given
process with reasonable certainty.

This problem is illustrated for lithography
smulation in Figures 1 and 2. In Figure 1 the
Focus-Exposure data for an isolated line is shown
with a simulation of the process using modeling
parameters calibrated using only this dataset. The
agreement  between the sSmulation and
experimental data is good considering the
expected repeatability of the data. Unfortunately,
when this set of parameters is used to simulate a
dense feature image with the same resist and
compared to experiment the result is shown in
Figure 2. As can be seen the smulation has
considerable mismatch with the experimental data
(especidly for low doses). By calibrating to more
than one dataset this problem can be alleviated.

co

200

280

260

240

M EEY S
A

220 EAE e X ; .80
b L F.m*
200

180

160 i

Figure 1. Comparison of isolated line
experimental Focus-Exposure  data  with
simulation results using parameters calibrated
using only this dataset.
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Figure 2. Comparison of 180 dense line
experimental focus-exposure data with simulation
results using parameters calibrated from the
isolated line data of Figure 1.




3. Tuning Examples

In this section two examples of resist model
calibration are demonstrated using coupled fits of
Focus Exposure matrix data for isolated and dense
features. The first example demonstrated is for
the JSR KrF resist MI1Y.

The lithographic data was obtained using a
0.63NA KrF sepper and 0.8/0.4 annular
illumination. The mask was a chrome on quartz
binary mask. The isolated features were 300nm
(wafer dimension) and the dense features were
180nm/360nm pitch. Both PAB and PEB
temperatures were 130°C for 90s. The substrate
used was an optimized inorganic ARC stack. The
resist thickness was 415nm.

For calibration the opticad parameters were
fixed a A =0, B = 09m™, n = 1.78. These
parameters were obtained from a separate
calibration using CD swing curve data. The base
quencher loading was aso fixed at 0.1 relative to
the PAG loading. Because the PEB temperature
was held fixed the activation energy parameters
for diffusivity and deprotection were held constant
at 25.869 kca/mol and not adjusted. The develop
model was chosen to be the Origina Mack model
With Ryax = 1090nnV/s, Rn = 0.11nm/s, and my, =
0.67.

Selecting the correct resist parameters to
caibrate is an important first step.  The
parameters chosen for calibration were acid yied
C, Diffuson Coefficient pre-exponential In(Arp),
Deprotection Rate pre-exponentia In(Ar,) and
Develop Contrast R,. These parameters are the
standard set of parameters most commonly used
for calibrating to FE matrix data from chemically
amplified ressts. The initial values were C =
0.07cn?/mJ, In(Arp) = 36.0, In(Ar,) = 27.8 and R,
= 8.0, which yield the results shown in Figures 1
and 2.

By smultaneously minimizing the combined ¢?
of the fit to both data sets (dense and isolated
features), multiple data set tuning was achieved.
The final optimized parameters obtained were C =
0.043, In(Arp) = 35.62, In(Ary) = 29.0 and R, =
15.65. The resulting agreement between
simulation and experiment for both datasets is
quite good as shown in Figures 3 and 4.
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Figure 3: Comparison of experimental Focus
Exposure data with the multi-data set calibrated
smulation results for 300nm isolated lines using
MO1Y photoresist.
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Figure 4: Comparison of experimental Focus-
Exposure data with the multi-data set calibrated
smulation results for 180nm nested lines using
MO1Y photoresist.

The second cdibration example usng multiple
datasets involved the Shipley trench/contact hole
KrF resst UV210. The lithographic data was
obtained using a 0.7NA KrF stepper and 0.85
sigma partially coherent illumination. The mask
was a chrome on quartz binary mask. The
isolated features were 160nm (wafer dimension)
trenches and the dense features were 160nm
trenches at 320nm pitch. Both PAB and PEB
temperatures were 130°C for 90s. The substrate
used was Shipley organic ARC AR2 on silicon.
The resist thickness was 393nm.



When cdibrating a new resst, a common
approach is to start with parameters from a similar
resst. In this case, the optical parameters were
initidly fixed at A =0, B = 0.5, n = 1.746, values
previoudy measured for UV6, a smilar resist
manufactured by Shipley. The base quencher
loading was aso fixed at 0.16 relative to PAG.
As with the M9O1Y case the activation energy
parameters were held constant. The develop
model was chosen to be the Origina Mack model
with Ryax = 4050nm/s, Ry, = 0.4nm/s, and my, =
0.6. These vaues are smilar to those found for
UVe.

The parameters originaly chosen for calibration
were acid yiedd C, Diffuson Coefficient pre-
exponential  In(Arp), Deprotection Rate pre-
exponentia In(Ar,) and Develop Contrast R,. The
initial values were C = 0.063, In(Arp) = 330,
In(Ary) = 27.0 and R, = 23.0. After cdibration
falled to yield reasonable agreement for both
datasets simultaneoudly the absorbance parameter
B was allowed to fluctuate from its initia guess of
0.5mmi".

With this change the calibration converged to a
satisfactory solution as shown in Figures 5 and 6.
The fina optimized parameters obtained were C =
0.0375, In(Arp) = 31.55, In(Ar,) = 27.023, R, =
344 and B =0.38.
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Figure 5. Comparison of experimental Focus
Exposure matrix CD data with the multi-data set
caibrated simulation results for 160nm isolated
trenches using UV 210 photoresist and the process
conditions given in text.

(M)
2E0T
240

2E0 2500
2600+
.

h 2B0*

200 b ~ 2000
E - e R +3me

o0 ‘ 2N W Hme
180 '
170 Ty

160

150
42 41 00 01 02 0% b4 O

Figure 6: Comparison of experimental Focus-
Exposure matrix CD data with the multi-data set
calibrated smulation results for 160nm dense
trenches using UV 210 photoresist and the process
conditions given in text.

4. Conclusions

As has been shown, resist parameters can be
caibrated using measured lithographic data
However, the quantitative predictive capability of
any st of parameters cadlibrated from a single
dataset is suspect. It is important to use severa
datasets that sample different regions of parameter
space. A good dart is to use both isolated and
dense feature Focus-Exposure data to calibrate
the resist model.
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