Contents

Preface xv

1. Introduction to Semiconductor Lithography 1
 1.1 Basics of IC Fabrication 2
 1.1.1 Patterning 2
 1.1.2 Etching 3
 1.1.3 Ion Implantation 5
 1.1.4 Process Integration 6
 1.2 Moore’s Law and the Semiconductor Industry 7
 1.3 Lithography Processing 12
 1.3.1 Substrate Preparation 14
 1.3.2 Photoresist Coating 15
 1.3.3 Post-Apply Bake 18
 1.3.4 Alignment and Exposure 19
 1.3.5 Post-exposure Bake 23
 1.3.6 Development 24
 1.3.7 Postbake 25
 1.3.8 Measure and Inspect 25
 1.3.9 Pattern Transfer 25
 1.3.10 Strip 26
 Problems 26

2. Aerial Image Formation – The Basics 29
 2.1 Mathematical Description of Light 29
 2.1.1 Maxwell’s Equations and the Wave Equation 30
 2.1.2 General Harmonic Fields and the Plane Wave in a Nonabsorbing Medium 32
 2.1.3 Phasors and Wave Propagation in an Absorbing Medium 33
 2.1.4 Intensity and the Poynting Vector 36
 2.1.5 Intensity and Absorbed Electromagnetic Energy 37
2.2 Basic Imaging Theory
 2.2.1 Diffraction 39
 2.2.2 Fourier Transform Pairs 43
 2.2.3 Imaging Lens 45
 2.2.4 Forming an Image 47
 2.2.5 Imaging Example: Dense Array of Lines and Spaces 48
 2.2.6 Imaging Example: Isolated Space 50
 2.2.7 The Point Spread Function 51
 2.2.8 Reduction Imaging 53

2.3 Partial Coherence
 2.3.1 Oblique Illumination 57
 2.3.2 Partially Coherent Illumination 58
 2.3.3 Hopkins Approach to Partial Coherence 62
 2.3.4 Sum of Coherent Sources Approach 63
 2.3.5 Off-Axis Illumination 65
 2.3.6 Imaging Example: Dense Array of Lines and Spaces Under Annular Illumination 66
 2.3.7 Köhler Illumination 66
 2.3.8 Incoherent Illumination 69

2.4 Some Imaging Examples

3. Aerial Image Formation – The Details 75
 3.1 Aberrations
 3.1.1 The Causes of Aberrations 75
 3.1.2 Describing Aberrations: the Zernike Polynomial 78
 3.1.3 Aberration Example – Tilt 81
 3.1.4 Aberration Example – Defocus, Spherical and Astigmatism 83
 3.1.5 Aberration Example – Coma 84
 3.1.6 Chromatic Aberrations 85
 3.1.7 Strehl Ratio 90
 3.2 Pupil Filters and Lens Apodization 90
 3.3 Flare
 3.3.1 Measuring Flare 92
 3.3.2 Modeling Flare 94
 3.4 Defocus
 3.4.1 Defocus as an Aberration 95
 3.4.2 Defocus Example: Dense Lines and Spaces and Three-Beam Imaging 98
 3.4.3 Defocus Example: Dense Lines and Spaces and Two-Beam Imaging 100
 3.4.4 Image Isofocal Point 102
 3.4.5 Focus Averaging 103
 3.4.6 Reticle Defocus 104
 3.4.7 Rayleigh Depth of Focus 105

Problems 71
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5</td>
<td>Imaging with Scanners Versus Steppers</td>
<td>106</td>
</tr>
<tr>
<td>3.6</td>
<td>Vector Nature of Light</td>
<td>108</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Describing Polarization</td>
<td>111</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Polarization Example: TE Versus TM Image of Lines and Spaces</td>
<td>113</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Polarization Example: The Vector PSF</td>
<td>114</td>
</tr>
<tr>
<td>3.6.4</td>
<td>Polarization Aberrations and the Jones Pupil</td>
<td>114</td>
</tr>
<tr>
<td>3.7</td>
<td>Immersion Lithography</td>
<td>117</td>
</tr>
<tr>
<td>3.7.1</td>
<td>The Optical Invariant and Hyper-NA Lithography</td>
<td>118</td>
</tr>
<tr>
<td>3.7.2</td>
<td>Immersion Lithography and the Depth of Focus</td>
<td>120</td>
</tr>
<tr>
<td>3.8</td>
<td>Image Quality</td>
<td>121</td>
</tr>
<tr>
<td>3.8.1</td>
<td>Image CD</td>
<td>121</td>
</tr>
<tr>
<td>3.8.2</td>
<td>Image Placement Error (Distortion)</td>
<td>123</td>
</tr>
<tr>
<td>3.8.3</td>
<td>Normalized Image Log-Slope (NILS)</td>
<td>123</td>
</tr>
<tr>
<td>3.8.4</td>
<td>Focus Dependence of Image Quality</td>
<td>125</td>
</tr>
<tr>
<td>Problems</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. Imaging in Resist: Standing Waves and Swing Curves

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>Standing Waves</td>
<td>130</td>
</tr>
<tr>
<td>4.1.1</td>
<td>The Nature of Standing Waves</td>
<td>130</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Standing Waves for Normally Incident Light in a Single Film</td>
<td>131</td>
</tr>
<tr>
<td>4.1.3</td>
<td>Standing Waves in a Multiple-Layer Film Stack</td>
<td>135</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Oblique Incidence and the Vector Nature of Light</td>
<td>137</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Broadband Illumination</td>
<td>141</td>
</tr>
<tr>
<td>4.2</td>
<td>Swing Curves</td>
<td>144</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Reflectivity Swing Curve</td>
<td>144</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Dose-to-Clear and CD Swing Curves</td>
<td>148</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Swing Curves for Partially Coherent Illumination</td>
<td>149</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Swing Ratio</td>
<td>151</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Effective Absorption</td>
<td>154</td>
</tr>
<tr>
<td>4.3</td>
<td>Bottom Antireflection Coatings</td>
<td>156</td>
</tr>
<tr>
<td>4.3.1</td>
<td>BARC on an Absorbing Substrate</td>
<td>157</td>
</tr>
<tr>
<td>4.3.2</td>
<td>BARCs at High Numerical Apertures</td>
<td>160</td>
</tr>
<tr>
<td>4.3.3</td>
<td>BARC on a Transparent Substrate</td>
<td>164</td>
</tr>
<tr>
<td>4.3.4</td>
<td>BARC Performance</td>
<td>165</td>
</tr>
<tr>
<td>4.4</td>
<td>Top Antireflection Coatings</td>
<td>167</td>
</tr>
<tr>
<td>4.5</td>
<td>Contrast Enhancement Layer</td>
<td>170</td>
</tr>
<tr>
<td>4.6</td>
<td>Impact of the Phase of the Substrate Reflectance</td>
<td>170</td>
</tr>
<tr>
<td>4.7</td>
<td>Imaging in Resist</td>
<td>173</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Image in Resist Contrast</td>
<td>173</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Calculating the Image in Resist</td>
<td>177</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Resist-Induced Spherical Aberrations</td>
<td>179</td>
</tr>
<tr>
<td>4.7.4</td>
<td>Standing Wave Amplitude Ratio</td>
<td>181</td>
</tr>
</tbody>
</table>
5. Conventional Resists: Exposure and Bake Chemistry
 5.1 Exposure
 5.1.1 Absorption
 5.1.2 Exposure Kinetics
 5.2 Post-Apply Bake
 5.2.1 Sensitizer Decomposition
 5.2.2 Solvent Diffusion and Evaporation
 5.2.3 Solvent Effects in Lithography
 5.3 Post-exposure Bake Diffusion
 5.4 Detailed Bake Temperature Behavior
 5.5 Measuring the ABC Parameters
 Problems

6. Chemically Amplified Resists: Exposure and Bake Chemistry
 6.1 Exposure Reaction
 6.2 Chemical Amplification
 6.2.1 Amplification Reaction
 6.2.2 Diffusion
 6.2.3 Acid Loss
 6.2.4 Base Quencher
 6.2.5 Reaction–Diffusion Systems
 6.3 Measuring Chemically Amplified Resist Parameters
 6.4 Stochastic Modeling of Resist Chemistry
 6.4.1 Photon Shot Noise
 6.4.2 Chemical Concentration
 6.4.3 Some Mathematics of Binary Random Variables
 6.4.4 Photon Absorption and Exposure
 6.4.5 Acid Diffusion, Conventional Resist
 6.4.6 Acid-Catalyzed Reaction–Diffusion
 6.4.7 Reaction–Diffusion and Polymer Deblocking
 6.4.8 Acid–Base Quenching
 Problems

7. Photoresist Development
 7.1 Kinetics of Development
 7.1.1 A Simple Kinetic Development Model
 7.1.2 Other Development Models
 7.1.3 Molecular Weight Distributions and the Critical Ionization Model
 7.1.4 Surface Inhibition
 Problems
7.1.5 Extension to Negative Resists 267
7.1.6 Developer Temperature 267
7.1.7 Developer Normality 268
7.2 The Development Contrast 270
 7.2.1 Defining Photoresist Contrast 270
 7.2.2 Comparing Definitions of Contrast 274
 7.2.3 The Practical Contrast 276
 7.2.4 Relationship between γ and $r_{\text{max}}/r_{\text{min}}$ 277
7.3 The Development Path 278
 7.3.1 The Euler–Lagrange Equation 279
 7.3.2 The Case of No z-Dependence 280
 7.3.3 The Case of a Separable Development Rate Function 282
 7.3.4 Resist Sidewall Angle 283
 7.3.5 The Case of Constant Development Gradients 284
 7.3.6 Segmented Development and the Lumped Parameter Model (LPM) 286
 7.3.7 LPM Example – Gaussian Image 287
7.4 Measuring Development Rates 292
Problems 293

8. Lithographic Control in Semiconductor Manufacturing 297
 8.1 Defining Lithographic Quality 297
 8.2 Critical Dimension Control 299
 8.2.1 Impact of CD Control 299
 8.2.2 Improving CD Control 303
 8.2.3 Sources of Focus and Dose Errors 305
 8.2.4 Defining Critical Dimension 307
 8.3 How to Characterize Critical Dimension Variations 309
 8.3.1 Spatial Variations 309
 8.3.2 Temporal Variations and Random Variations 311
 8.3.3 Characterizing and Separating Sources of CD Variations 312
 8.4 Overlay Control 314
 8.4.1 Measuring and Expressing Overlay 315
 8.4.2 Analysis and Modeling of Overlay Data 317
 8.4.3 Improving Overlay Data Analysis 320
 8.4.4 Using Overlay Data 323
 8.4.5 Overlay Versus Pattern Placement Error 326
 8.5 The Process Window 326
 8.5.1 The Focus–Exposure Matrix 326
 8.5.2 Defining the Process Window and DOF 332
 8.5.3 The Isofocal Point 336
 8.5.4 Overlapping Process Windows 338
 8.5.5 Dose and Focus Control 339
 8.6 H–V Bias 343
 8.6.1 Astigmatism and H–V Bias 343
 8.6.2 Source Shape Asymmetry 345
8.7 Mask Error Enhancement Factor (MEEF) 348
 8.7.1 Linearity 348
 8.7.2 Defining MEEF 349
 8.7.3 Aerial Image MEEF 350
 8.7.4 Contact Hole MEEF 352
 8.7.5 Mask Errors as Effective Dose Errors 353
 8.7.6 Resist Impact on MEEF 355
8.8 Line-End Shortening 356
 8.8.1 Measuring LES 357
 8.8.2 Characterizing LES Process Effects 359
8.9 Critical Shape and Edge Placement Errors 361
8.10 Pattern Collapse 362
Problems 366

9. Gradient-Based Lithographic Optimization: Using the Normalized Image Log-Slope 369
 9.1 Lithography as Information Transfer 369
 9.2 Aerial Image 370
 9.3 Image in Resist 377
 9.4 Exposure 378
 9.5 Post-exposure Bake 381
 9.5.1 Diffusion in Conventional Resists 381
 9.5.2 Chemically Amplified Resists – Reaction Only 383
 9.5.3 Chemically Amplified Resists – Reaction–Diffusion 384
 9.5.4 Chemically Amplified Resists – Reaction–Diffusion with Quencher 391
 9.6 Develop 393
 9.6.1 Conventional Resist 397
 9.6.2 Chemically Amplified Resist 399
 9.7 Resist Profile Formation 400
 9.7.1 The Case of a Separable Development Rate Function 400
 9.7.2 Lumped Parameter Model 401
 9.8 Line Edge Roughness 404
 9.9 Summary 406
Problems 408

10. Resolution Enhancement Technologies 411
 10.1 Resolution 412
 10.1.1 Defining Resolution 413
 10.1.2 Pitch Resolution 416
 10.1.3 Natural Resolutions 418
 10.1.4 Improving Resolution 418
 10.2 Optical Proximity Correction (OPC) 419
 10.2.1 Proximity Effects 419
 10.2.2 Proximity Correction – Rule Based 422