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 ABSTRACT

The Mask Error Enhancement Function (MEEF) serves to amplify reticle errors. This can lead to proximity effects and bias
problems that are much larger than would be expected from the normal reduction factor of the imaging system. The economic
impact on reticle specifications can be severe. This paper examines the theoretical description of the MEEF for dark features:
isolated lines, isolated posts, and dense 1:1 line/space features. MEEF for dense features is found in general to be smaller
than 1 over a wide range, while MEEF for isolated features is always greater than 1. This  “MEEF Gap” between isolated and
dense features may help to explain the sensitivity of OPC to isolated and dense bias..
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1. INTRODUCTION

Moore’s Law continues to drive developments in lithography to smaller and smaller dimensions [1][2].  Optical lithography
at 180 nm using steppers with illumination at 248 nm wavelengths has now become routine, and for this sub-wavelength
lithography domain, precise control of the reticle for Optical and Process Correction (OPC) has become critical. [3]

The existence of the Mask Error Enhancement Factor (MEEF) and its impact on lithography has been discussed for some
time now [4][5][6][7]. This description is used to describe the relation between changes in the pattern found on the reticle and
the corresponding pattern on the wafer. This is mathematically expressed as
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where M is the imaging system reduction ratio (typically M=4 for DUV lithography systems). For an ideal linear imaging
system, MEEF=1.0, which means that the reticle patterns correspond exactly to the reticle. In practice, process variables can
significantly increase the MEEF as the image fidelity of the system deteriorates. [7]

Our intention with this paper is to review the behavior of the MEEF as it relates to the linearity behavior for three special
dark features: Isolated lines, isolated posts, and dense line/space configurations.



2. CASE I: THE ISOLATED LINE

For an isolated line, shown in Figure 1, image linearity is a common metric for the quality of a lithography process. Typical
linearity behavior for an isolated line is shown in Figure 2. The reticle, fabricated by DuPont Photomask and measured using
a KLA-Tencor 8100-XP-R, shows excellent linearity – the reticle feature is almost exactly the target CD dimension,
normalized for the reduction ratio M=4.

The image on the wafer, however, is significantly different. For larger features, the image formed on the wafer faithfully
tracks the feature as produced on the reticle, but for linewidths significantly smaller than the wavelength used for lithography
(in this case, 248 nm), the wafer CD begins to be significantly smaller than the target, until the process fails entirely and no
measurable line is formed at all.

The nature of this behavior is easy to understand theoretically. For the simple 1-D line of width a (using 1X dimensions for
notation convenience), the amplitude at the mask can be described by
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where we have used the notation of Bracewell for the Rectangle function Π(x) [8]. This is illustrated in Figure 3.

Figure 1: Illustration of the mask pattern for an
isolated line
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The behavior of an optical system can be reduced mathematically to a representation of the amplitude in the pupil plane [9].
In this case, for coherent illumination, the wavefront of the mask becomes the Fourier Transform of the mask function
M(x,y). Because addition of Fourier Transforms is linear, and the transform of Π(x) is the well known sinc(ν), the transform
becomes
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where ν represents the spatial frequencies in the x direction, and ω represents spatial frequencies in the y direction. This is
illustrated in Figure 4. The coherent frequency cutoff of the of a circular pupil is given by ρ=NA/λ,=where NA is the
numerical aperture of the system, λ is the wavelength of light, and ρ is the radial spatial frequency

22 ωνρ += {4}
The pattern at the pupil therefore becomes
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b)

Figure 3: a) The original mask function for a isolated dark line of width a, in this case with a=0.2 micron, and
 b) the decomposition according to equation {2}.

Figure 4: The frequency spectrum for functions of Figure 3, with frequency cutoff for NA=0.63 and λ=0.248 µm given by
ν=2.54 µm-1. The two curves plotted on the right correspond to a=0.20 µm (solid) and a=0.10 µm (dashed).
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The inverse transform corresponding to the electric field at the image then becomes
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where ⊗  represents convolution and the term on the right is the line-spread function. Because
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and, for small a, we can approximate
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the image field then becomes
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The image intensity I(x,y)= |E(x,y)|2 can be approximated by
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This is illustrated in Figure 5. This essentially describes a bright field with the line spread function subtracted in proportion to
the width of the isolated feature.

Figure 5: Coherent image formed according to Equation [x] for a=0.2 µm (thick solid), a=0.1 µm (light solid), and a=0.05
µm (dashed). The linewidth on the wafer can be estimated by taking a slice at Ith=0.3
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The CD is found by taking a slice of the image at constant
intensity value and finding the distance between the two
values of x that solve equation {10} as a transcendental
equation with I(x,y) = Ith. This yields a prediction for small a,
as shown in Figure 6. It is clear that, the smaller the value of
a, the smaller the width of the feature, until the image
dramatically shrinks to a linewidth of 0 when xplus=xminus=0.
Because sinc(0)=1, this yields
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For typical values NA=0.63, λ=248 nm, and Ith=0.3,
this absolute minimum printable feature (linewidth
vanishingly small) is a line with a=89 nm (1X) on the mask.
This is significantly smaller than that observed in practice, as
was illustrated in Figure 2, where the actual linewidth drops
to 0 when the target CD is 140 nm. This difference occurs
due to process effects that occur when imaging in resists that
are significantly thicker than the features being produced.

The MEEF in this case is quite predictable. A small change
in the isolated line thickness simply creates an isolated line
that is smaller or larger, and the behavior in this case is
predicted by moving up or down the linearity curve. As the
linearity fails completely as the line becomes too dim, the
MEEF increases dramatically as the slope of the linearity
curve grows. The MEEF is simply derived from the
differences in the linearity curve.

Qualitatively, this explains the actual behavior well.
However, quantitatively, the discrepancies are real
and large as illustrated in Figure 7. In fact, the MEEF
for isolated lines in practice never drops below a
value of 1.0. This simply emphasizes the difference
in behavior for actual photolthography processes
when compared with imaging simulation, especially
coherent imaging simulation.

Figure 7: MEEF predicted using coherence theory (black)
and data from processed silicon wafers. The
theory leads to good qualitative understanding,
but partial coherence effects and resist properties
contribute significantly to the final measured
MEEF.
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2. CASE II: THE ISOLATED POST

The case of the isolated post is very similar to that of the
isolated line, with the exception that the mask is now defined
by a two dimensional function
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This is illustrated in Figure 8. The Fourier pupil analysis yields
an equation very similar to {3},
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Figure 8: Illustration of the mask pattern for an isolated post.

This analysis is similar to the case of the isolated line, with truncation by a circular pupil of radius NA/λ, in a manner similar
to equation {5} and {6} for the isolated line. However, now the mask function is fully two-dimensional, and the image of the
filled pupil function is the Point Spread Function
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where J1(x) is the Bessel function of the first kind of order 1 [10]. The final image is therefore given by
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where r=√x2 + y2. When I=Ith, this becomes a transcendental equation which can be solved for r, just as was done in the case
of the isolated line. Noting that J1(x)/x = 0.5 when in the limit x=0, we can determine that the post vanishes when
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For typical values NA=0.63, λ=248 nm, and Ith=0.3, this absolute minimum printable feature (i.e. post CD vanishingly small)
is calculated to be a feature with  a=149 nm (1X) on the mask. The rolloff behavior predicted by this would be qualitatively
similar to that for the isolated line.

Figure 9 shows the experimental measurements of this rolloff for isolated posts in photoresist. Qualitatively, these are very
similar to the isolated line, as predicted, but the point where the post fails is significantly larger than that for the isolated line
(275 nm vs. 140 nm) and also significantly larger than would be predicted by this purely coherent imaging calculation.

A further complication is that the measurement taken from the reticle represents a 1-Dimensional CD, measured across the
reticle feature. In fact, these features can be poorly formed, and the amount of light blocked by the post is significantly
smaller than would be predicted by a rectangular post of the same CD dimension. This is similar to the case observed with
contact holes in a previous paper [11].



The solution in that case was to substitute the actual CD as measured with an  “effective” CD = √Area in the calculation of
target dimension [ref us]. This makes the MEEF straightforward:
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where “CDeffective” = √Area. Once the measured data for linearity is presented with this normalization, the MEEF is easily
calculated again as the derivative of the linearity curve.

Figure 9: Measured linearity behavior for an isolated post. The deviation from linearity (MEEF > 1) begins for
posts with a<350 nm, and fails completely for a<275 nm.
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3. CASE III: EQUAL LINES AND SPACES

1. General Case

The case of equal lines and spaces, as illustrated in Figure 10,  is not as straightforward. Although there are several measures
for linearity that can be presented for dense lines, the most typical is the response of a constant 1:1 pitch as the spatial
frequency changes. This would be parallel to the frequency response exemplified as the MTF for a classical optical system.
Other measures commonly used to describe linearity of a different sort are pitch curves. These show linewidth changes that
occur for features with constant nominal width as the pitch is changed from 1:1 to isolated. Although this has been a common
analysis technique of interest for making predictions of OPC efficacy [12], the classic linearity curve shows the fundamental
frequency response of the system, and will be the technique used here.

The mask function is defined by
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where a is the nominal linewidth and 2a is the pitch, and n is an integer. The notation for the replicating function III(x) is also
from Bracewell [ref]. The corresponding Fourier spectrum is given by
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This is illustrated in Figure 11. Note that the sign of the frequency components depends on the selection of origin. We have
made the arbitrary selection of the center of a dark fringe as the origin in this example, making the mask function even and
dictating that all frequency components are real and symmetric.

a)

b)
Figure 10: Illustration of the mask pattern for equal lines

and spaces.
Figure 11 a) Mathematical description of equal lines and

spaces for a=0.2, and b) the corresponding pupil
function. Sign conventions are dictated by the
symmetry choice illustrated in 11a).
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Again, in this case, the frequency cutoff of the pupil truncates all but the first orders from being transmitted and recollected to
form the image. The pupil function then becomes
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Note from Figure 11b that the coincidence of the periodicity being equal to twice the linewidth means that the only 3 major
frequency components contribute to the final image. Furthermore, The term in brackets on the right is easily recognized as
II(ν), the transform of cos(πx). The image therefore corresponds to a zero frequency background light component, modulated
by the cosine term. The relative amplitudes are fixed, as can be seen from Figure 11.

Although providing good conceptual explanations, as we have
seen, coherent imaging models are especially not very
accurate when it comes to dense lines and spaces because the
MTF of the lens, interacting with partial coherence, plays a
significant role in defining the overall transmission of the
various frequency components. We instead turn to partially
coherent aerial image simulation for the rest of the paper, with
a partial coherence factor σ=0.5.

The imaging behavior of equal line/spaces under these
conditions and with λ=248 nm and NA = 0.63 is shown in
Figure 12. The behavior for larger features is linear, as
expected, but for features nearer to the frequency cutoff, the
behavior takes a surprising upswing before totally collapsing.
This represents the changing bias introduced by the zero
frequency components of the spectrum, as the contrast of the
image itself is reduced. All these simulations were generated
using a constant intensity threshold value of 0.3. Selecting a
slightly different value can change this upswing behavior.

To assume the derivative of this linearity curve is the MEEF
would lead to very surprising behavior indeed. The slope of
this linearity response curve is 0 for target CDs around 175
nm, and negative for values below this. A negative MEEF
would imply that an increase in linewidth on the reticle could
actually case a decrease in feature size, something that is not
observed experimentally. Yet imaging in this regime is known
in practice to have extreme sensitivity to mask errors and process conditions, and ME
something other than the derivative of this linearity curve must be used to evaluate the

The definition of MEEF as stated in equation {1} is correct, but we need to be careful
is similar to that carried out for isolated lines, there are two distinct types of changes 
a global error, in the form of a feature bias that can arise from processing conditions
that occurs in a single line, either due to a writing error or a localized defect.
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2. Case IIIa: Global bias

In the case of a global bias, all lines are uniformly distorted, either being wider or narrower than the target linewidth. An
example for smaller lines is illustrated in Figure 13. The mask can be expressed mathematically as.
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where d is the total change in the width of the target CD with the perturbation. This is illustrated in Figure 14a. For a thinner
line. d has a positive value, while for a thicker line, d has a negative value.

a)

Figure 13: Illustration of the mask pattern for equal lines b)
and spaces with a constant process bias.

Figure 14 a) Mathematical description of equal lines and
spaces for a=0.2 um, with a process bias of d=0.04
um, and b) the corresponding pupil function.

The pattern at the pupil is given by the Fourier Transform, which becomes
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is illustrated in Figure 14b. In this case, the periodicity of the sampling function is still the same, but the narrower (wider) the
feature itself, the wider (narrower) the corresponding sinc function in Fourier space. This breaks the degeneracy of the
sampling points with the nulls in the sinc function. Although generally beyond the frequency cutoff for coherent light, for
partially coherent illumination the second order diffracted light begins to pass through the pupil and contribute to the image
contrast as well.

The effect this has on the linearity is shown in the simulations in Figure 15. As can be easily seen, the point of upswing
changes somewhat with the width or narrowness of the line, moving to smaller feature sizes as more light passes through the
mask (i.e. as the lines get thinner) until the upswing no longer occurs.
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The MEEF is found by referring exactly to Equation {1}, and taking the difference between the curves of Figure 15 for
corresponding spatial frequencies. The result is shown in Figure 16. This result is far more consistent with the experience of
process engineers.  Far from being the derivative of the linearity curve, the dense MEEF instead generally resembles the
MEEF for isolated lines: near 1.0 for large features, rising catastrophically for features smaller than the wavelength.

Unlike the isolated lines, however, the MEEF is significantly less than 1 for a large range of spatial frequencies, in this case
from 200 to 400 nm. The minimum MEEF is actually 0.7 when the feature size is slightly larger than the wavelength used in
this particular example (248 nm). For comparison, as was shown in Figure 7,  the MEEF for isolated lines is greater than 1
over this range, and never less than 1 in any circumstance.

Figure 15: Image linewidths for “equal” lines and spaces,
using  a variety of values for the process bias
d.

Figure 16: MEEF for the dense lines calculated in Figure
15. The value clearly drops below 1 for a wide
range of target CD values.

3. Case IIIa: The Effect of Photoresist.

All the simulations of dense lines so far used aerial image simulation with a conventional threshold value of 0.3. When
exposure and processing parameters are taken into account, process simulation can be used to estimate these effects. The
mask design used for linearity measurements of isolated features did not have this particular set of dense perturbations on it,
so the equivalent results must be generated through simulation. A software tool like PROLITH/3D provides well calibrated
models of resist and processing effects for this purpose.[13]
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All the simulations for isolated lines so far used aerial
Using the resist parameters listed in Table I,
PROLITH/3D simulations were carried out for the case
outlined above, and the corresponding MEEF
calculated. The result is illustrated in Figure 17.
Qualitatively, the MEEF follows the same behavior,
being near 1 for large features, shrinking to 0.7 for
features slightly larger than the wavelength, and rising
catastrophically as the feature size is smaller than the
wavelength. However, this rise occurs sooner than in
the pure aerial image case, just as was observed in the
isolated case.

The final comparison between isolated and dense
MEEF under process conditions is shown in Figure 18.
The line is drawn as a guide to the eye through the array
of measured datapoints that were plotted in Figure 7.
The “MEEF Gap” ranging from 200 to 400 nm is clear,
and as large as 0.6 at maximum separation. This
difference calls for  better characterization of MEEF not
just for isolated lines, but for both isolated and dense
lines, and the need to anticipate this susceptibility to
errors in making OPC.

This might explain the relative lack of difficulty with
mask specification and manufacturing that makers of
dense chips with a high degree of periodicity (such as
DRAMs) often encounter in subwavelength
lithography, compared to the greater difficulty
encountered in designs (such as ASICs) that have a
wide range of isolated and dense features. This iso-
dense MEEF difference may be the real reason iso-
dense bias effects are so significant for OPC – not only
can a bias exist, but the ability to correct isolated
features is made more difficult due to the differences in
MEEF.

Table I:
PROLITH Resist Simulation Parameters

Stepper:
λ=0.248 nm NA=0.63 σ=0.5

Film Stack
UV6 resist (600 nm) with DUV18 ARC (180 nm)

Dose:
13.2 mJ/cm2

Post-Exposure Bake
90 sec at 125° C

Development Time
60 sec.
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Figure 17: Plot of the MEEF as calculated for dense
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4. Case IIIb: An isolated Defect

a)

b)
Figure 19: Illustration of the mask pattern for equal lines

and spaces with an error in a single feature.
Figure 20 a) Mathematical description of equal lines and

spaces for a=0.2 um, with a process bias of d=0.04
um for the center line, and b) the corresponding
frequency spectrum for the defect.

For completeness, we mention one other possible defect but will not do the full analysis here. In this case, only the center line
of the defect grows or shrinks. This is illustrated in Figure 19. The Mask function is no longer periodic, but is given by
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where d is the total change in CD with the perturbation, as illustrated in Figure 20a. For a thinner line. d has a positive value,
while for a thicker line, d has a negative value. The pattern at the pupil is given by the Fourier Transform, which becomes
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The left portion of this is the unperturbed spectrum, as was plotted in Figure 11, while the right portion is the spectrum of the
defect. This is plotted in Figure 20b).

The amplitude of this defect spectrum is much smaller than the spectrum plotted in Figure 11, suggesting that for d to be
contributing significantly to this lithography, it would have to be very large. Furthermore, the MEEF will not be symmetric –
larger features will tend to cause bridging, afecting neighboring features, while small features will simply tend to disappear.
The analysis of these cross terms may require further analysis, and is beyond the scope of this work.
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4. CONCLUSIONS

MEEF represents a significant problem for advanced lithography, and tools to better measure and characterize it are required.
Estimates of the MEEF using coherent optical theory can provide some insight into the qualitative behavior, but any kind of
quantitative prediction requires the use not only of aerial image, but simulation of the resist properties as well. We have also
observed that the MEEF for isolated dark lines and dense 1:1 line/space pairs can be quite different, with a “MEEF Gap” as
large as 0.6 forming between the two. This difference in susceptibility to mask errors may explain why MEEF has not been
nearly as large a problem for DRAM manufacturers as it can be for ASICS, and may amplify the existing problem of
isolated-dense bias.
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