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ABSTRACT 

The performance needs of a bottom antireflection coating (BARC) used in advanced optical 
lithography are extremely demanding, with reflectivities as low as 0.1% and even lower often 
required.  BARC thickness and complex refractive index values (n = n + iκ) must be highly 
optimized, requiring accurate knowledge of the BARC, resist and substrate optical properties.  In 
this paper, we have performed a theoretical analysis of the BARC optimization process with 
respect to the propagation of BARC n and κ measurement errors.  For several realistic cases, 
specifications on the measurement accuracy of these optical parameters will be derived and the 
lithographic consequences of BARC metrology errors will be explored.  Approaches to improving 
the measurement of BARC thickness and refractive index will be suggested. 

Keywords:  Bottom antireflection coating, BARC, refractive index measurement, vacuum ultra-violet 
reflectometry, PROLITH 

 
 
1. Introduction 

 At 65nm device generations and below, requirements for bottom antireflection coating (BARC) 
performance are extremely stringent.  Reflectivities less than 0.1% are often required.  BARC thickness and 
complex refractive index values must be highly optimized for the specific resist, film stack, and even for the 
feature size and lithographic imaging parameters being used.  Implicit in the optimization procedure is the 
assumption that the optical properties of the BARC have been measured to sufficient accuracy so that the 
uncertainty in the measurement of these BARC properties will not have a significant impact on the 
lithographic performance of the resulting optimized BARC. 
 
 In this paper, we will perform a theoretical analysis of the BARC optimization process with respect 
to the propagation of BARC n and κ (the real and imaginary parts of the refractive index) measurement 
errors.  For several realistic cases, specifications on the measurement accuracy of these optical parameters 
will be derived and the lithographic consequences of BARC metrology errors will be explored.  Next, the 
impact of measurement noise on the uncertainty of n and κ measurements will be studied for the case of 
spectral reflectance-based measurements.  In particular, the influence of measurement wavelength range will 
be shown to have a significant impact on the propagation of measurement noise to uncertainty in BARC n 
and κ values.  Finally, the lithographic impact of BARC measurement choices will be shown as a 
propagation of measurement uncertainty to an increase in final substrate reflectivity.  The goal of this paper 
is to present a comprehensive method for evaluating the impact of measurement noise on the lithographic 
performance of BARC materials.   
 
 



 
 

2. Theory of BARC Optimization 

 The goals of film stack optimization are to minimize standing waves in the resist, and to reduce the 
sensitivity of the process to film stack variations (including resist, but other layers as well).  By far the most 
common way to accomplish all of these goals is by using an optimized BARC.  When optimizing a litho 
process for reflectivity, there are three basic tasks:  1) optimize the BARC, 2) optimize the resist thickness 
(from a swing curve perspective), and 3) understand the sensitivity to BARC, resist, and film stack 
variations.  For the first task, there are two classes of BARC problems: 
 

• BARC on an absorbing substrate (such as metal) – the goal is to reduce the reflectivity (the thickness 
of the metal or what’s underneath doesn’t matter) 

• BARC on a transparent substrate (such as silicon dioxide) – reduce the sensitivity to oxide thickness 
variations (while also keeping reflectivity low) 

 
 There is an unfortunate problem in that the substrate reflectivity experienced by the photoresist 
cannot be measured.  Measuring the reflectivity of the substrate when not coated by photoresist is not useful 
to this task, and once coated the reflectivity becomes hidden from measurement.  Thus, the approach that 
must be used is to calculate the reflectivity from measured fundamental parameters, namely the thickness and 
complex refractive index of each layer in the film stack. 
 
 There are three BARC parameters available for optimization:  the thickness of the BARC, and the 
real and imaginary parts of its refractive index.  The treatment below follows that given in Reference 1.   
 
BARC on an Absorbing Substrate 
 
 The electric field reflection coefficient (the ratio of reflected to incident electric fields) at the 
interface between two materials is a function of the complex indices of refraction for the two layers.  For 
normal incidence, the reflection coefficient of light traveling through layer i and striking layer j is given by  
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where n is the complex refractive index (n = n + iκ).  For the case of a bottom antireflection coefficient 
(BARC), assume the BARC (layer 2) is sandwiched between a resist (layer 1) and a very thick substrate 
(layer 3).  The total reflectivity looking down on layer 2 includes reflections from both the top and bottom of 
the BARC film.  The resulting reflectivity, taking into account all possible reflections, is 
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where the internal transmittance, τD, is the change in the electric field as it travels from the top to the bottom 
of the BARC, given by 
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for a BARC of thickness D.   



 
 

 
 If the role of layer 2 is to serve as an antireflection coating between materials 1 and 3, one obvious 
requirement might be to minimize the total reflectivity given by equation (2).  If the light reflecting off the 
top of layer 2 (ρ12) can cancel out the light that travels down through layer 2, reflects off layer 3, and then 
travels back up through layer 2 (ρ23τ 2D), then the reflectivity can become exactly zero.  In other words, 
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When designing a BARC material, there are only three variables that can be adjusted:  the real and imaginary 
parts of the refractive index of the BARC, and its thickness.  One classic solution to equation (4) works 
perfectly when the materials 1 and 3 are non-absorbing:  let τ 2D = -1 and ρ12 = ρ23.  This is equivalent to 
saying that the BARC thickness is a ‘quarter wave’ (D = λ/4n2), and the non-absorbing BARC has a 
refractive index of 312 nnn = .  While this BARC solution is ideal for applications like antireflective 
coatings on lens surfaces, it is not particularly useful for common lithography substrates, which are 
invariably absorbing. 
 
 Will a solution to equation (4) always exist, even when the resist and substrate have complex 
refractive indices?  Since all the terms in equation (4) are complex, zero reflectivity occurs when both the 
real part and the imaginary part of equation (4) are true.  This requirement can be met by adjusting only two 
of the three BARC parameters (n, κ, and D).  In other words, there is not just one solution but a family of 
solutions to the optimum BARC problem.  Expressing each reflection coefficient in terms of magnitude and 
phase, 
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equation (4) can be expressed as two equalities: 
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Unfortunately, the seemingly simple forms of equations (4) and (6) are deceptive:  solving for the unknown 
complex refractive index of the BARC is exceedingly messy.  As a consequence, numerical solutions to 
equation (4) or (6) are almost always used.  Note that a second-minimum BARC can be optimized using 
equation (6) by adding 2π to the angle difference on the right hand side of the equation. 
 
 Consider a common case of a BARC for 193nm exposure of resist on silicon.  The ideal BARC is the 
family of solutions as shown in Figure 1, which gives the ideal BARC n and κ values as a function of BARC 
thickness.  Each solution produces exactly zero reflectivity for normally incident monochromatic light.  
Within this family of solutions, available materials and the acceptable range of BARC thicknesses (usually 
constrained by coating and etch requirements) will dictate the final solution chosen.   
 
 



 
 

 
(a) 

 

 
(b) 

Figure 1 Optimum BARC refractive index (real and imaginary parts, n and κ) as a function of BARC 
thickness for normal incidence illumination (resist index = 1.7 + i0.01536 and silicon substrate 
index = 0.8831 + i2.778) at 193nm.  a) First minimum BARCs, and b) second minimum BARCs. 

 
 
 Another criterion for choosing the optimum BARC is the sensitivity to BARC thickness variations.  
Often, BARC layers are coated over topography and are partially planarizing.  This means that BARC 
thickness variations across the device are inevitable.  Is one BARC solution from the family of solutions 
given in Figure 1 better from a BARC thickness sensitivity perspective?  Consider only small errors in 
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BARC thickness about the optimum value, so that D = Dopt + ∆ where Dopt is the optimum thickness given by 
equation (6).  Since equation (4) is true at the optimum thickness,  
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Using a similar operation on the denominator of the reflectivity expression (2) gives 
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Assuming ∆ is small, keeping only the first two terms of a Taylor’s expansion of the exponential in the 
numerator gives 
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As can be seen, the reflectivity increases approximately quadratically about the optimum BARC thickness.  
Different BARC solutions will have different sensitivities, depending on how close the ratio n2/n1 is to one.  
For the first minimum BARC example in Figure 1, the ~50nm BARC thickness solution has the minimum 
sensitivity to BARC thickness errors. 
 
 Similarly, variations in refractive index of a BARC can cause the reflectivity of an otherwise optimal 
BARC solution to increase.  For the case of the optimal normal-incidence BARC, the reflectivity for a given 
change is BARC index ∆n (which can be an error in real and/or imaginary parts) will be approximately 
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Note that 2n∆  is the sum of the squares of the errors in the real and imaginary parts of the index.  The 
sensitivity to BARC errors, either in thickness or in refractive index, are shown in Figures 2 and 3 for the 
case of the BARC solutions of Figure 1.  Note that for this case, practical first minimum BARC solutions 
have thicknesses in the 20 – 50 nm range.  Thus, for this case, thicker BARCs are less sensitive to thickness 
errors but more sensitive to refractive index errors.  Assuming that a reflectivity of 0.1% can be tolerated, a 
20 nm optimal BARC can tolerate 1 nm of thickness error, or a 0.053 change in refractive index.  A 40 nm 
optimal BARC can tolerate 2 nm of thickness error, or a 0.04 change in refractive index.  Roughly, if the 
BARC thickness has no error, the real part of the refractive index of these BARCs must be controlled to 
2.5% assuming no error in the imaginary part, or the imaginary parts must be controlled to 8% for no error in 
the real part.  Likewise, if the refractive index has no error, the BARC thickness must be controlled to 
roughly 5% for the given 0.1% reflectivity tolerance. 
 



 
 

     
 (a) (b) 
Figure 2 Sensitivity of substrate reflectivity for the optimum BARCs of Figure 1a as a function of a) 

BARC thickness errors, or b) BARC refractive index errors. 
 
 

    
 (a) (b) 
Figure 3 Sensitivity of substrate reflectivity for the optimum second minimum BARCs of Figure 1b as a 

function of a) BARC thickness errors, or b) BARC refractive index errors. 
 
 
BARC on a Transparent Substrate 
 
 The second type of BARC optimization problem involves the use of a BARC on a transparent 
substrate, such as an oxide film.  For such a case, the overall substrate reflectivity will be a function of the 
oxide thickness and one of the goals of the BARC design is to reduce the sensitivity to underlying film 
thickness variations.  As can be seen from Figure 4, using the BARC at a first minimum results in a very 
large sensitivity to underlying oxide thickness variations.  In fact, the thickest BARC films provide the most 
robust behavior when a wide range of oxide thicknesses are expected.  Thus, the preferred design approach 
for this case is to determine the maximum allowed BARC thickness from an integration perspective, then 
optimize the n and κ values of the BARC to minimize the maximum reflectivity over the range of expected 
oxide thicknesses. 
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Figure 4 Substrate reflectivity versus BARC thickness over a range of underlying oxide thicknesses 

(oxide on top of a silicon substrate). 
 
 
 A ‘thick’ BARC solution can be thought of as a BARC that completely absorbs all of the light that 
may reflect off the substrate and is thus insensitive to changes in the substrate stack.  For this case, the 
product of BARC thickness and the imaginary part of its refractive index (κ2) must be sufficiently high.  
Maximum BARC thickness is usually determined by process considerations, thus fixing the minimum κ2.  
Assuming the imaginary part of the resist refractive index is sufficiently small, the resulting reflectivity is 
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The optimum real part of the BARC refractive index to minimize reflectivity will then be 
 

 2
2

2
12 κ+= nn  (12) 

 
The resulting reflectivity is 
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 Obviously, the thick BARC solution is insensitive to BARC thickness variations by design.  The 
sensitivity to errors in BARC refractive index can be obtained from equation (11).  For a small change in the 
real part of the BARC refractive index, 
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For a small change in the imaginary part of the BARC refractive index, 
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BARC Performance 
 
 How critical is BARC optimization?  How low must the substrate reflectivity be before acceptable 
CD control can be expected?  There is no single answer to these questions, since they are process and feature 
dependent.  But consider the example shown in Figure 5.  Here, 100 nm lines on a 280 nm pitch are 
simulated (using PROLITH v9.3) with a stepper using annular illumination, with a center sigma given by 
σNA = 0.54.  As can be seen, a substrate reflectivity of less than 0.1% still leads to a noticeable swing 
behavior. 
 
 

 
Figure 5 CD swing curves (100nm lines with a 280nm pitch are printed with a stepper using annular 

illumination, with a center sigma given by σNA = 0.54) for two different BARCs with different 
levels of optimization, as given by the resulting substrate reflectivity R.  (Simulations using 
PROLITH v9.3.) 

 
 
 A common approach to characterizing the impact of substrate reflectance (that is, the impact of a 
non-ideal BARC) is to relate reflectivity in the presence of film thickness variations to effective dose errors.  
Consider a resist thickness D = Dmin ± ∆ where Dmin is the thickness at the swing curve minimum and ∆ is 
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small compared to the swing period.  Assuming a reasonably good BARC, the effective dose error due to the 
resist thickness variation is 
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The dose error comes from a bulk absorption term (α∆) plus a fraction of the swing amplitude.  Consider the 
standard 193 nm resist on BARC on silicon case described above, with α = 1.2 µm-1, D = 200nm, nresist = 1.7, 
and |ρair-resist| = 0.26.  For ∆ in nanometers, 
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For an 8.3 nm increase in resist thickness, the bulk effect causes about a 1% effective dose error.  The swing 
effect will cause another 1% effective dose error for that 8.3 nm resist thickness error if the substrate 
reflectivity is 0.33%.  The maximum allowed substrate reflectivity is a function of the range of resist 
thickness that must be tolerated and the amount of effective dose error one is willing to accept.  
Specifications of substrate reflectivity near 0.1% are not uncommon. 
 
3. Simulating Errors in Thin Film Metrology 

 The thickness and optical properties of photoresist and BARC films are routinely characterized using 
reflectometry and/or ellipsometry.  In practice, many varieties of both techniques exist.  Regardless of the 
specific method employed, the underlying approach typically involves recording the optical response through 
wavelength from a sample and then analyzing this data in order to obtain values for the thickness and optical 
properties of the film of interest.  The calculated response is usually described using the Fresnel equations in 
combination with one or more models to describe the optical properties of the material comprising the 
sample.  Once the resist and BARC thicknesses and optical properties are determined, the methods of the 
preceding section can be used to compute substrate reflectivity.  
 
 For reflectance measurements, the discrepancy between the measured and calculated data sets is 
characterized by the weighted merit function 
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which is minimized through use of an iterative optimization or ‘fitting’ procedure such as the Levenberg-
Marquardt method [2].  In equation (17), the yi are the measured data (i.e., reflectance), the xi are the 
independent variable (the wavelength, λ, corresponding to data point yi), σi is an estimate of the uncertainty 
in yi, a is the set of model parameters, N is the number of data points, and M is the number of parameters in 
the set a that are to be optimized.  The best fit parameters are defined as those that give the smallest value 
for 2χ . 
 
 Assuming the substrate refractive index and thickness can be regarded as known, a typical single 
film on substrate measurement requires the determination of 2N+1 unknowns (film thickness plus N pairs of 
n and κ).  This is generally not possible with only N measured data points.  Dispersion models that 
parameterize the behavior of n and κ with respect to wavelength are normally used to reduce the total 



 
 

number of optimization parameters.  The measured parameter set a then consists of the film thickness and a 
usually small set of dispersion parameters.  The optimized dispersion parameters are used to compute the n 
and κ values at the desired wavelengths at the end of the fitting procedure.   
 
 An example of a dispersion model is the Tauc-Lorentz model [3].  The Tauc-Lorentz model is based 
on a combination of the Tauc joint density of states and the Lorentz oscillator.  It has advantages over other 
available dispersion models in that it is Kramers-Kronig and time-reversal symmetry consistent, correctly 
describes the behavior of κ in the high frequency limit, and is capable of accurately characterizing the 
dispersion of a wide range of materials [3].  For a simple 1-term Tauc-Lorentz film, such as the 1-term resist 
example below, the parameter set a consists of the resist thickness and the Tauc-Lorentz dispersion 
parameters Eg, ε1, A, E0, and C, for a total of 6 parameters to be determined from each reflectance 
measurement.  The complex index of refraction n = n(Eg, ε1, A, E0, C, λ) is calculated from the Tauc-Lorentz 
model at the end of the fitting procedure.  Films having a more complicated dispersion structure, such as the 
BARC example below, are characterized using multiple Tauc-Lorentz terms, each term representing a peak 
in the material’s absorption spectrum.  The total parameter set then consists of the film thickness, the high 
frequency constant term ε1, and four additional parameters Eg, A, E0, and C for each dispersion peak.   
 
 The best achievable 2χ value is generally limited by the applicability of the model, that is, the extent 
to which the dispersion model actually describes the optical properties of the material.  Still, a good merit 
value is not in itself sufficient to ensure that accurate results have been obtained.  In practice, uncertainties in 
the derived results may also arise as a result of ambiguity or correlations between parameters in the model, 
meaning that different combinations of dispersion parameters lead to indistinguishable reflectance spectra.  
These ambiguities in dispersion parameters often lead to ambiguities in the refractive index values that are 
calculated from them.  In addition, lack of sensitivity of the modeled data to parameter changes can lead to 
uncertainties when determining parameter values. 
 
 Generally speaking, inter-parameter correlation may be reduced by providing greater constraint to 
the fitting process.  In reflectometry, greater constraint may be achieved by a variety of means, including 
adding data measured at different incident angle and polarization conditions and/or multi-sample analysis.  In 
this paper, another means of providing greater constraint is explored, namely the extension of conventional 
190-800nm reflectometry − ultra-violet to visible (UV-Vis) wavelengths − into the 120-190nm vacuum ultra-
violet (VUV) region.  The optical properties of many materials exhibit richer structure (i.e., peaks and 
valleys) in the VUV region than at UV and visible wavelengths.  This can aid both in enhancing sensitivity 
of reflectance data to changes in film parameters, as well as in reducing inter-parameter correlations, yielding 
more reliable n and κ measurements, even when n and κ data are needed only for non-VUV wavelengths.  It 
will be demonstrated that there is considerable benefit associated with the extension of reflectometry data 
sets into the VUV when using such data in material characterization applications, particularly as they relate 
to the accurate determination of n and κ values at the 193 nm wavelength.  
 
 To explore the effects of extending conventional reflectometry into the VUV, several simulations of 
193 nm resist and BARC materials were considered.  The optical properties of the resist and BARC, based 
on actual representative material measurements and shown in Figure 6, were assumed to be perfectly 
described using a one-term and three-term Tauc-Lorentz model, respectively.  The reflectance of a 900Å 
single layer of each material on a crystalline silicon substrate was calculated from 120–1000 nm wavelength 
range using the assumed parameter values.  These reflectance spectra were then used as the basis for creating 
a series of similar data files with noise added according to a Gaussian distribution with standard deviations of 
0.1% and 0.2%.  In this sense, the original noiseless data is considered to be the ‘true’ reflectance of the 
sample, which can never be realized in an optical measurement, while the data with added noise represents 



 
 

realized, albeit simulated, representations of the true reflectance.  It is important to point out that the noise 
model assumed for this initial study is consistent with assuming that errors in the raw data are due to random 
uncorrelated processes, and represents ‘best-case’ performance for a given noise level since systematic errors 
and/or model shortcomings are not represented here.  
 
 

    
 (a) (b) 
Figure 6 Optical properties used in simulations of a) 1-term photoresist, and b) 3-term BARC materials. 
 
 
 The simulated reflectance data files were analyzed using the Levenberg-Marquardt algorithm in an 
attempt to re-obtain the starting parameters.  To seed the optimization routine, the thickness and Tauc-
Lorentz starting parameters were offset by 1% from their nominal values. The final fit parameters were then 
fed back into the Tauc-Lorentz model and used to calculate the determined values for n and κ at 193 nm.  
The results of 100 such measurements for each noise condition were used to compute standard 3-σ 
confidence limits for thickness and 193 nm optical properties.  
 
 The results from analysis of the 1-term photoresist reflectance files are summarized in Table 1 and 
Figure 7 below.  The data corresponding to conditions 1 – 3 in Figure 7 correspond to fits performed on 
simulated data files with a noise level of 1σ = 0.2%.  The first two conditions were fit over the range of 190–
800nm and 190–880nm, respectively.  The third condition corresponds to fits extending into the VUV (120–
800nm).  As is evident from these results, the differences between the first and second conditions are 
negligible.  Hence, the extension of the conventional reflectance data set of the first condition by 80 nm at 
the long wavelength end (where the n and κ values are essentially flat) does nothing to improve measurement 
performance.  The performance of condition 3 however, wherein the data set of condition 1 is extended by 70 
nm into the VUV (where the n and κ values exhibit considerable structure) yields a very different result, 
reducing the 3σ uncertainty by a factor of 3.1 in n and 6.7 in κ.  Conditions 4 – 6 present the results of fits 
performed on data files with a reflectance uncertainty of 1σ = 0.1%.  Again the same trends are evident - 
extending the standard (190–800nm) reflectance data range by 80nm to longer wavelength does nothing to 
improve measurement performance, while extending by 70 nm into the VUV reduces the 3σ repeatability by 
a factor of 3.6 in n and 7.6 in κ. 
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Table 1 Summary of results obtained from fitting 100 simulated reflectance files based on 900Å 
photoresist with n and κ values at 193 nm equal to 1.71575 and 0.052138 respectively. 

Photoresist Comparison 

Condition 1 2 3 4 5 6 

Oscillators 1 1 1 1 1 1 

Range (nm) 190-800 190-880 120-800 190-800 190-880 120-800 

Added Noise (1σ) 0.20% 0.20% 0.20% 0.10% 0.10% 0.10% 

Mean Thickness (Å) 899.96 899.95 899.95 900.00 900.00 900.00 

Thickness 3σ 1.03802 0.99264 0.98018 0.48079 0.46992 0.43397 

Mean n (193 nm) 1.71604 1.71600 1.71594 1.71596 1.71590 1.71578 

n 3σ 0.00800 0.00799 0.00260 0.00443 0.00449 0.00119 

Mean κ (193 nm) 0.05221 0.05218 0.05217 0.05221 0.05221 0.05215 

κ 3σ 0.00290 0.00287 0.00043 0.00159 0.00162 0.00021 
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Figure 7 Mean value of a) n, and b) κ at 193 nm obtained from fitting 100 simulated reflectance files 
based on a 900Å photoresist. Error bars represent +/- 3 sigma uncertainties. 

 
 
 The uncertainties in the index values are a direct consequence of the uncertainties in the Tauc-
Lorentz parameters used to describe the film.  Table 2 compares the 3-σ uncertainties for each of the 5 Tauc-
Lorentz parameters for 190-800nm and 120-800nm data ranges for the 1 term resist example.  The 
comparison shows that the uncertainties in Tauc-Lorentz parameters are reduced for the 120-800nm data by 
at least a factor of 4, and in many cases by an order of magnitude.  The extent to which the Tauc-Lorentz 
uncertainties propagate into actual errors in measured n and κ values depends on the amount of constraint 
provided by the reflectance itself.  For thicker films, changes in these parameters tend to affect the 
reflectance spectra everywhere in the 120-800 nm range, and the addition of VUV wavelength data serves to 
enhance sensitivity to changes in optical parameters and to reduce inter-parameter correlation, resulting in 



 
 

more reliable n and κ measurements.  As the film thickness decreases, the degree of uncertainty in n and κ 
increases as changes in film optical properties and thickness have less of an impact on 190-800 nm 
reflectance, to the point that determining both thickness and optical properties for a < 50-100 Å film requires 
120-190 nm data, even if we’re only trying to measure the optical properties for wavelengths greater than 
190 nm. 
 
 
Table 2 3-σ uncertainties for the 1 term resist Tauc-Lorentz parameters calculated from the 100x data 

for 190-800 nm reflectance and 120-800 nm reflectance.  A random noise error of σi = 0.1% 
was assumed for the raw data in both cases. 

 Eg (eV) ε1(∞) A (eV) E0 (eV) C (eV) 
190-800nm 0.031617 0.274983 14.731 1.4430 2.6138 
120-800nm 0.0083061 0.027886 1.6428 0.10169 0.22171 

 
 
 The results from analysis of the 3-term BARC reflectance files are summarized in Table 3 and 
Figure 8. Conditions 1 and 2 in Table 3 correspond to fits performed on data files with a noise level of 1σ = 
0.2% and fit over the range of 190–800 nm and 120–800 nm, respectively.  As is evident, the extended VUV 
data set yields a significant reduction in measurement uncertainty of both n and κ.  The data corresponding to 
conditions 3 – 5 represent the result of fits performed on data files with a noise level of 1σ = 0.1%. Once 
again the 120–800 nm data set outperforms the standard set of condition 3.  The data corresponding to 
condition 4 results from fits performed using a 2-term Tauc-Lorentz dispersion rather than a 3-term 
dispersion to model the 190–800 nm data.  The motivation for this condition follows from an examination of 
the n and κ spectra and simulated reflectance spectrum presented in Figures 9 and 10, which illustrate how 
structure in the VUV optical properties can play a subtle role in optical measurements performed at longer 
UV-Vis wavelengths. 
 
Table 3 Summary of results obtained from fitting 100 simulated reflectance files based on 900 Å BARC 

film with n and κ values at 193 nm equal to 1.70304 and 0.212061 respectively. 

BARC Comparison 

Condition 1 2 3 4 5 

Oscillators 3 3 3 2 3 

Wavelength Range (nm) 190-800 120-800 190-800 190-800 120-800 

Added Noise (1σ) 0.20% 0.20% 0.10% 0.10% 0.10% 

Mean Thickness (Å) 900.07 900.06 900.02 900.47 900.02 

Thickness 3σ 0.86854 0.75791 0.46442 0.55658 0.39158 

Mean n (193 nm) 1.70300 1.70294 1.70318 1.71281 1.70302 

n 3σ 0.00603 0.00287 0.00380 0.00168 0.00131 

Mean κ (193 nm) 0.21168 0.21189 0.21209 0.22878 0.21199 

κ 3σ 0.00989 0.00358 0.00686 0.00302 0.00167 
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Figure 8 Mean value of (a) n and (b) κ at 193 nm obtained from fitting 100 simulated reflectance files 
based on a 900 Å BARC. Error bars represent +/- 3 sigma uncertainties. 

 
 
 The solid lines in Figure 9 are the real and imaginary parts of the refractive index for the 3-term 
BARC material.  The structure associated with an oscillator centered near 146 nm is apparent in the 
corresponding reflectance spectra, shown as the solid line in Figure 10.  The corresponding curves for a 2-
term BARC are shown as dashed curves in Figures 9 and 10.  Above 190 nm, the reflectance from the 2 and 
3-term models appear quite similar.  Hence, without prior knowledge of the presence of the third oscillator in 
the VUV, conventional reflectometry users (only collecting data down to 190 nm) may lack incentive to 
include a third term in their description of the BARC.  The results of this are shown in Table 3, condition 4.  
While the 2-term dispersion yields a better uncertainty statistic for the 190–800 nm case, the resulting 
systematic error causes the measured index to be completely erroneous. 
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 (a) (b) 
Figure 9 Real (a) and imaginary (b) parts of the refractive index of BARC materials as described using 2-

term and 3-term Tauc-Lorentz model. 
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Figure 10 Simulated reflectance spectra for a 900Å BARC film based on 2-term and 3-term Tauc-Lorentz 

model. 
 
 
4. Discussion/Conclusions 

 The results from the previous two sections can now be combined to examine the influence of 
metrology uncertainty on the effectiveness of a BARC at controlling reflectivity.  The BARC studied above, 
which was based on an actual BARC material, is close to but not exactly an optimum second minimum 
BARC for 193nm resist on silicon.  However, assuming that the fractional uncertainty in n and κ 
demonstrated in the simulated BARC of Section 3 is constant, the uncertainty in the optimum 90 nm second 
minimum BARC of Section 2 can be used.  Table 4 shows the relevant refractive indices and uncertainties 
under this assumption. 
 
Table 4 Conversion of n and κ uncertainty from the simulated BARC of Section 3 (0.2% noise case) to 

the optimum BARC of Section 2 under the assumption of constant relative uncertainty for both n 
and κ. 

 Simulated BARC Optimum BARC 

 
190 – 800 
nm range 

120 – 800 nm 
range 

190 – 800 nm 
range 

120 – 800 nm 
range 

n (193nm) 1.703 1.70294 1.691 1.691 
σn 0.00201 0.00096 0.00200 0.00095 
σn/n 0.00118 0.00056 0.00118 0.00056 
κ (193nm) 0.21168 0.21189 0.3301 0.3301 
σκ 0.00330 0.00119 0.00515 0.00186 
σκ /κ 0.01559 0.00562 0.01559 0.00562 

 
 
 For the optimum 90 nm thick second-minimum BARC from Section 2, equation (10) becomes 
 

 2769.0 n∆≈R  (18) 



 
 

For a 1-σ error in both real and imaginary parts of the refractive index, the resulting reflectivity (at 193nm) 
becomes 

 ⎟
⎠
⎞⎜

⎝
⎛ +≈ 22769.0 κσσ nR  (18) 

 
For a 3-σ error in both real and imaginary parts of the refractive index, the resulting reflectivity would be 
nine times larger.  The results for reflectivity, for both the conventional 190 – 800 nm metrology and the 
VUV extended 120 – 800 nm metrology, are summarized in Table 5.  The extended wavelength range results 
in a 7X reduction in the worst-case substrate reflectivity.  For example, if a substrate reflectivity error of 
0.01% is budgeted for BARC n and κ 3-σ metrology errors, then clearly the conventional 190 – 800 nm 
wavelength range with 0.2% added noise produces an unacceptably high reflectivity.  Under the same 
conditions, however, the extended 120 – 800 nm wavelength range with its inherently higher noise tolerance 
produces reflectivities well within specifications.  Note that no BARC thickness errors were included in this 
analysis, nor errors in photoresist optical properties.  Since these errors will put the BARC film off of its 
minimum in reflectivity, the results presented here are a best case scenario. 
 
Table 5 Resulting 1-σ and 3-σ worst-case reflectivities for the 0.2% added noise condition. 

 
190 – 800 nm 

range 
120 – 800 nm 

range 
σn 0.00200 0.00095 
σκ 0.00515 0.00186 
1-σ R (%) 0.00235 0.00034 

3-σ R (%) 0.02115 0.00306 
 
 The analysis presented above shows how measurement noise propagates from the optical 
measurement of BARC n and κ to the resulting reflectivity of a BARC material.  In particular, we have 
shown how the wavelength range used in optical measurements can impact the BARC optimization process.  
The analysis shows that extending the conventional UV-Vis metrology to VUV wavelengths can lead to a 
significant reduction of the substrate reflectivity error caused by metrology errors, showing that VUV 
metrology is a promising option for use in the characterization and selection of materials used in modern 
lithography.  In addition, the distinct spectral features that are present in the vacuum ultraviolet region of the 
material optical properties could be used, for example, as a means of fingerprinting different lithography 
films that may otherwise appear to be identical if inspected at longer wavelengths.  Finally, we point out that 
the improvements of VUV metrology over conventional metrology are expected to be even more pronounced 
for thinner films used in the fabrication of semiconductor devices.   
 
 Further studies in this area would include the impact of high angles of incidence on BARC 
performance, and the coupling of other error sources like photoresist and substrate optical properties. 
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