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Abstract
A stochastic modeling approach is used

to predict the results of the exposure and
post-exposure bake of a chemically ampli-
fied photoresist. The statistics of photon
shot noise, chemical concentration, expo-
sure, reaction diffusion and amplification
are derived. The result, though preliminary,
is a prediction of the standard deviation 
of the final deprotection level of polymer
molecules in the resist using simple analyt-
ical expressions. Combining this result with
ongoing work to characterize the stochas-
tics of resist development will eventually
lead to a full model of the line-edge rough-
ness of a resist feature. The current model
is used to elucidate the impact of resist
properties and processing on line-edge
roughness. The optimization of acid diffu-
sion length and the exposure dose/thermal
dose trade-off leads to a minimum LER.
Optimization of resist molecular size
should be possible once the development
step is fully modeled.

Line-edge roughness (LER), and the
associated line-width roughness (LWR),
are likely the ultimate limiters of resolution
in optical lithography for semiconductor

manufacturing. As feature sizes have
scaled smaller to the cadence of Moore’s
Law, the accompanying roughness of the
edges of these features has stubbornly
refused to scale. Thus, this roughness has
become a more prominent feature of
lithography patterning with each new
technology generation. Current devices
are being manufactured with resist LWR
(measured as the 3σ line-width variation
along a single line) that approaches or
exceeds 10 percent of the feature size.
Further scaling of feature size will only
make a bad problem worse. Significant
effort is now being expended by the
industry to address LER. One essential
component of such efforts is the develop-
ment of predictive models for line-edge
roughness.

Most theoretical descriptions of lithog-
raphy make an extremely fundamental and
mostly unstated assumption about the
physical world being described: the so-
called continuum approximation. Even
though light energy is quantized into pho-
tons, and chemical concentrations are
quantized into spatially distributed mole-
cules, the descriptions of aerial images
and latent images in standard lithography
simulators ignore the discrete nature of
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these fundamental units and instead use
continuous mathematical functions. When
describing lithographic behavior at the
nanometer level, an alternate approach,
and in a very real sense a more fundamen-
tal approach, is to build the quantization
of light as photons and matter as atoms
and molecules directly into the models
used. Such an approach is called stochas-
tic modeling, and involves the use of ran-
dom variables and probability density
functions to describe the statistical fluctu-
ations that are expected. Of course, such
a probabilistic description will not make
deterministic predictions – instead, quanti-
ties of interest will be described by their
probability distributions, which in turn 
are characterized by their moments, such 
as the mean and variance. Thus, feature 
size, for example, is described by a mean
(called the critical dimension, CD) and a
standard deviation (the LWR).

One common approach to studying 
LER formation is through the use of Monte
Carlo simulations[1-3] and mesoscale 
modeling.[4] These approaches can be
extremely valuable since they can be made
rigorous at the length scale of interest and
can be used to test the impact of various
fundamental stochastic mechanisms that
may be at work. The drawback to Monte
Carlo approaches, however, is their lengthy
execution times resulting from the need to
run each stochastic step a large number of
times to provide proper statistical results.
Often important physical insights can
remain undiscovered beneath the moun-
tains of statistical data that a Monte Carlo
simulator can generate.

While Monte Carlo methods can be
extremely useful, there is also a need for
the development of simple, analytical
expressions that capture the essence of the

LER formation mechanisms. By formulating
the equations describing the fundamental
processes and kinetics of exposure, baking
and development as stochastic equations,
one might hope for a solution to these sto-
chastic equations that mimic the mean-field
solutions that are used in physical lithogra-
phy simulators today. Alas, attempts at
such a formulation are certain to be disap-
pointing as the fundamental stochastic
equations remain immensely complicat-
ed.[5] One approach, then, is to look for
solutions that provide, rather than the full
stochastic nature of each intermediate vari-
able, an approximation to the variance of
each term. Thus, while the mean-field theo-
ry of the continuum models gives the mean
of the distribution for each variable in a
tractable mathematical form, the goal here
is to find similar tractable expressions for
the variance of each term. This paper pro-
vides a progress report on this author’s 
as-yet incomplete effort.

Much of the treatment given below fol-
lows that provided in Ref. 6, with more
recent advances included.[7] A model is
presented that includes the statistics of
photon shot noise and chemical concen-
trations combined with probabilities of
absorption and exposure to give the vari-
ance of the acid concentration after expo-
sure. During post-exposure bake, acid dif-
fusion and reaction is first formulated to
give the effective acid concentration and
its variance, followed by the level of poly-
mer deprotection and its variance. The sto-
chastics of photoresist development are
touched upon next, but are not included in
the model used here due to their lack of
maturity. Finally, pulling the results togeth-
er, an attempt at a comprehensive line-
edge roughness model is provided, though
many deficiencies remain.
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1. Photon and Chemical
Concentration Shot Noise

Consider a light source that randomly
emits photons at some average rate into
some area A. Assume further that each
emission event is independent. Over some
time T, the probability that exactly n pho-
tons will be emitted in this time period is
given by a Poisson distribution. From this
distribution, the mean and standard devia-
tion of n, as well as the resulting intensity
of light I, can be calculated:

(1)

where h is Planck’s constant, c is the
vacuum speed of light, and λ is the vacu-
um wavelength. 

As this equation shows, the uncertainty
of getting the mean or expected intensity
grows as the number of photons is
reduced, a phenomenon known as shot
noise. As an example, consider a 193nm
exposure of a resist with a dose-to-clear 
of 10 mJ/cm2. At the resist edge, the mean
exposure energy (=〈I〉T) will be on the
order of the dose-to-clear. At this wave-
length, the energy of one photon, hc/λ, is
about 1.03 X 10-18 J. For an area of 1nm X
1nm, the mean number of photons during
the exposure, from equation (1), is about
97. The standard deviation is about 10, or
about 10 percent of the average. For an
area of 10nm X 10nm, the number of pho-
tons increases by a factor of 100, and the
relative standard deviation decreases by a
factor of 10, to about 1 percent. Since these
are typical values for a 193nm lithography
process, we can see that shot noise con-
tributes a noticeable amount of uncertain-
ty as to the actual dose seen by the pho-
toresist when looking at length scales less
than about 10nm. 

For extreme ultraviolet lithography
(EUVL), the situation is considerably worse.
At a wavelength of 13.5nm, the energy of
one photon will be 1.47 X 10-17 J, about 15
times greater than at 193nm. Also, the goal
is to have EUV resist sensitivity that is 2–4
times better than 193nm resists (though 
it is unclear whether this goal will be
achieved). Thus, the number of photons will
be 30-60 times less for EUV than 193nm
lithography. A 1nm X 1nm area will see only
two to three photons, and a 100nm2 area
will see on the order of 200 photons, with
a standard deviation of 7 percent.

Chemical concentration, the average
number of molecules per unit volume,
exhibits counting statistics identical to
photon emission (for reasonably low con-
centrations). Let C be the average number
of molecules per unit volume. For some
volume V, the probability of finding exactly
n molecules in that volume will be given 
by a Poisson distribution with an average
number of molecules in the volume equal
to CV, and the variance also equal to CV.
The relative uncertainty in the number of
molecules in a certain volume will be

(2)

As an example, consider a 193nm resist
that has an initial PAG concentration of 3
percent by weight, or a concentration of
about 0.07 mole/liter (corresponding to a
resist density of 1.2 g/ml and a PAG molec-
ular weight of 500 g/mole). Converting
from moles to molecules with Avogadro’s
number, this corresponds to 0.042 mole-
cules of PAG per cubic nanometer. In a vol-
ume of (10nm)3, the mean number of PAG
molecules will be 42. The standard devia-
tion will be 6.5 molecules, or about 15 per-
cent. For 248nm resists, the PAG loading is
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typically 3 times higher or more, so that
closer to 150 PAG molecules might be
found in a (10nm)3 volume, for a standard
deviation of 8 percent. Note that when the
mean number of molecules in a given vol-
ume exceeds about 20, the Poisson distri-
bution can be well approximated with a
Gaussian distribution.

2. Photon Absorption 
and Exposure

What is the probability that a photon
will be absorbed by a molecule of light-
sensitive material in the resist? Further,
what is the probability that a molecule of
sensitizer will react to form an acid? As
discussed above, there will be a statistical
uncertainty in the number of photons in a
given region of resist, a statistical uncer-
tainty in the number of PAG molecules,
and additionally a new statistical uncer-
tainty in the absorption and exposure
event itself.

Defining h as the concentration of acid
relative to the initial concentration of unex-
posed PAG, and leaving the details of the
derivation to Ref. 6, the standard deviation
of this acid concentration in some volume
V will be

(3)

where 〈n0-PAG〉 is the mean number of
PAGs initially found in that volume and 〈h〉
is the mean acid concentration resulting
from exposure. This result is reasonably
intuitive. The first term on the right-hand
side of equation (3) is the expected
Poisson result based on exposure kinetics
– the relative uncertainty in the resulting
acid concentration after exposure goes as
one over the square root of the mean
number of acid molecules generated with-

in the volume of interest. For large vol-
umes and reasonably large exposure
doses, the number of acid molecules gen-
erated is large and the statistical uncer-
tainty in the acid concentration becomes
small. For small volumes or low doses, a
small number of photogenerated acid mol-
ecules results in a large uncertainty in the
actual number within that volume. The sec-
ond term accounts for photon shot noise
and adds to the variance due to chemical
concentration shot noise. For the case of
the (10nm)3 of 193nm resist given above,
the standard deviation in initial acid con-
centration near the resist edge (where the
mean acid concentration will be about 0.4)
will be > 20 percent of the acid concentra-
tion. For 193nm resists, the impact of pho-
ton shot noise is minimal compared to
variance in acid concentration caused by
simple molecular position uncertainty.

For EUV resists, exposure entails an
extra mechanism. Absorption of a photon
leads to ionization and the release of pos-
sibly several secondary electrons, each of
which can potentially be captured by a
photoacid generator to create an acid. This
mechanism will not be treated here but
has been investigated by others.[8]

3. Acid-Catalyzed 
Reaction Diffusion

In this section we’ll consider reaction
diffusion and the polymer deblocking 
reaction. While the details of the derivation
of the results presented below will be 
left out (see Refs. 6 and 7), the approach
makes use of the concept of the von
Smoluchowski trap. When an acid
approaches a blocked (protected) site on
the polymer within a distance given by the
capture radius a, there is some probability
that a reaction will take place. Thus, the
stochastics of diffusion (a random walk
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through the three-dimensional resist matrix,
with a diffusion length σD) can be coupled
with the probability of capture and reaction
through the von Smoluchowski trap radius.
Since the probability that any given
blocked site will react is proportional to 
the time average of the acid concentration
seen by that site (that is, passing within a
distance a of that site) during the bake
cycle, we can define this time-average acid
concentration as heff and derive the uncer-
tainty of this quantity.

(4)

This result is extremely interesting.
Because the reaction depends on a diffus-
ing catalyst, the uncertainty in the effec-
tive (time-average) acid concentration is
reduced whenever the diffusion length is
greater than the capture distance of the
deblocking reaction.

The effective acid concentration can be
used to calculate the amount of deblocking
that occurs during PEB. Letting m be the rel-
ative concentration of blocked polymer sites,

(5)

where n0-blocked is the initial number of
blocked polymer sites found in the given
volume V. Or, in a slightly different form,

(6)

where Kamp is the amplification rate
constant and tPEB is the post-exposure
bake time (the amplification factor is αf =
KamptPEB).

While the above equations show how

fundamental parameters affect the result-
ing variance in the final blocked polymer
concentration, interpretation is somewhat
complicated by the fact that these param-
eters are not always independent. In par-
ticular, the Byers-Petersen model shows a
relationship between KamptPEB and σDa, a
topic that will be further discussed below. 

Consider the example of a typical
193nm resist, with initially 1.2 blocked
groups/nm3, 0.042 PAGs/nm3, KamptPEB = 2,
〈h〉 = 〈heff〉 = 0.3, and σD/a = 5. For a
(10nm)3 volume, σh/〈h〉 ≈ 0.28 and σ heff/
〈heff〉 ≈ 0.025. The remaining blocked poly-
mer will have 〈m〉 = 0.55 and σm = 0.023, or
about 4.3 percent. For a (5nm)3 volume, σm

= 0.064, or about 11 percent. 
The exposure dose dependence of σm

can be deduced using equation (5). As the
exposure dose goes to zero, 〈h〉 goes to 0
and 〈m〉 goes to 1. For an infinite dose, 〈h〉
goes to 1 and 〈m〉 goes to 0. The resulting
values for σm are

(7)

The variation of σm with dose is shown
in Figure 1.

Because a single acid molecule diffuses
and potentially causes many reactions,
these reactions will be stochastically corre-
lated.[9] If the diffusion of the acid cata-
lyst is the only mechanism by which the
concentration m becomes spatially corre-
lated, the autocorrelation of the reaction-
diffusion point spread function (RDPSF)
will define this spatial correlation. Consider
first the (non-normalized) autocorrelation
of the effective acid concentration.
Assuming that the initial distribution of 
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the catalyst is stochastically uncorrelated, 

(8)

It will be useful to normalize the auto-
correlation function to be one at the origin.
For the 1D case,

(9)

Analytical evaluation of equation (9) 
for the 1D, 2D and 3D cases does not seem
possible, so numerical integrations were
performed and the results fit to a standard
exponential correlation function:

(10)

where ζ is the correlation length and α
is the Hurst (roughness) exponent. Fitting
the numerical evaluation of equation (9) 
to the empirical function (10) produces
extremely good fits. For the important 3D
case, α ≈ 0.9 and the correlation length is
equal to 1.52σD. 

4. Acid-Base Quenching
The acid-base neutralization reaction

due to the presence of quencher may pose
the greatest challenge to stochastic model-
ing of the sort being derived here. While
acid concentrations in chemically amplified
resists are low, base quencher concentra-
tions are even lower, leading to greater sta-
tistical uncertainty in concentration for
small volumes. Further, since the reaction is
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Figure 1. The Dose Dependence of σm Using Equation (5) and the Parameters Given in the
Text, an Exposure Rate Constant of 0.05 cm2/mJ, and a (10nm)3 Volume
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one of annihilation, statistical variations 
in acid and base concentrations can lead
effectively to acid-base segregation, with
clumps of all acid or all base.[10,11] Such
clumping is likely to lead to low-frequency
line-edge roughness. The presence of
quencher, however, also leads to dramatic
improvements in the gradient of acid
which, as will become clear below, leads to
improvement in the final line-edge rough-
ness.[12] Much further work is needed to
study and model this phenomenon. Thus,
while acid-base quenching is extremely
important in its impact on LER, it will not
be considered in the model presented here.

5. Development
The surface-limited reaction of a partial-

ly deprotected polymer with developer can
be treated in a stochastic nature.[13,14]
However, dissolution rate couples with the
path of dissolution to produce the final
photoresist edge, so that the stochastic
nature of this dissolution path must also be
taken into account. One approach to study-
ing the stochastic nature of photoresist dis-
solution involves the characterization of
scaling relationships as a means for eluci-
dating fundamental mechanisms.[15,16] In
this paper, however, the development step
will be essentially ignored, except for one
aspect. Since a polymer molecule must
either dissolve or remain behind, the size of
the polymer will determine the volume V
over which the uncertainty in deblocking
concentration plays out. If a typical 193nm
resist polymer has a radius of gyration of
5nm, the volume is equivalent to a cube of
about 8nm on a side. This then becomes
the volume needed to determine 〈nphotons〉,
〈n0-PAG〉, and 〈n0-blocked〉. 

Note that larger resist polymer mole-
cules actually reduce line-edge roughness
by increasing the volume of resist over

which the stochastic reactions are aver-
aged. Since, however, the full development
step is not yet accounted for in this model,
the impact of molecular size on develop-
ment itself is not included. It seems obvious
that if larger molecules are removed or left
behind on the resist sidewall, the result will
be greater roughness. Thus, resist molecu-
lar size will provide two competing mecha-
nisms for sidewall roughness: Larger mole-
cules provide greater stochastic averaging
of the events leading up to that molecule’s
solubility (and thus reducing the uncertain-
ty in its solubility), but also produce larger
“pixels” of roughness as those molecules
dissolve or remain behind. Thus, it is clear
that there will be an optimum molecular
size that minimizes the overall sidewall
roughness of the resist feature. Determining
what this optimum molecular size is will
have to wait for more detailed modeling 
of the stochastic development process.

6. Line-Edge Roughness: 
An Overall Model

In the sections above, a stochastic
model for exposure and reaction-diffusion
of chemically amplified resists was devel-
oped. This stochastic model will now prove
useful for the prediction of certain line-
edge roughness trends. While develop-
ment should also be included, for the sake
of simplicity we will assume an infinite
contrast development process so that 
the line edge will be determined by the
blocked polymer latent image. Thus, a sim-
ple threshold model for the latent image
will determine the resist critical dimension.
A Taylor series expansion of the blocked
polymer concentration as a function of
position, cut off after the linear term,
allows us to predict how a small change in
blocked polymer concentration (Δm) will
result in a change in edge position (Δx):

A Simple Model of Line-Edge Roughness

FUTURE FAB International | Issue 34



(11)

From this, we can devise a simple quan-
titative model for line-edge roughness.
This equation, however, predicts that an
image that produces an infinite gradient 
of blocked polymer sites will have zero
LER. In reality, the non-zero molecular size
being dissolved will produce non-zero
roughness, even if an infinite gradient of
blocked sites could be obtained. Thus, the
standard measure of line-edge roughness,
from a top-down SEM, will be proportional
to the standard deviation of blocked poly-
mer concentration divided by its gradient
perpendicular to the line edge plus a term
to account for polymer size (σ0):

(12)

Michaelson[12] plotted measured LER
versus calculated values of dm/dx and
found that many different resists followed
an almost universal curve, which I have fit
to this model:

(13)

where LER is the 3σ value, in nanome-
ters, and dm/dx is in units of 1/µm. This fit
corresponds to σm = 0.011, which is on the
order of the values shown in Figure 1, and
a value of σ0 consistent with typical resist
polymer sizes.

To achieve a low LER it will be necessary
to make the standard deviation of the
deprotection small and make the gradient of
deprotection large. A main topic of Chapter
9 of Ref. 6 is how process parameters can be
used to maximize the latent image gradient
given an aerial image log-slope:

(14)

where

The term η represents the ratio of the
rate of diffusion for a feature of size L to
the rate of deblocking reaction. Comparing
equation (5) to equation (14), there is one
interesting variable in common to both:
acid diffusion. Increasing acid diffusion will
reduce σm, but will also reduce the latent
image gradient. One would expect, then,
an optimum level of diffusion to minimize
the LER.

To investigate the impact of diffusion
on LER, we can combine equations (5) and
(14) into (12). Thus, for the no-quencher
case, and ignoring photon shot noise to
make the equations a bit simpler,

(15)

so that

(16)

Figure 2 shows the trend of LER versus
acid diffusion for a 45nm feature for four
different values of the deprotection cap-
ture range a, 0.5, 1.0, 2.0 and 3.0nm. In
each case, there is a diffusion length that
minimizes the LER. Below the optimum
diffusion length, LER is limited by σm so
that increasing the diffusion will improve
LER. Above the optimum diffusion length
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the LER is gradient limited, so that increas-
es in diffusion further degrade the gradient
and worsen the LER. This optimum diffu-
sion length is given approximately by

(17)

where

Note that the optimum diffusion length
is constrained by the feature size at one
end and the deblocking reaction capture
range at the other:

(18)

As L decreases, there becomes less
room for the diffusion length to fit within
these constraints.

Unless, of course, a is allowed to
decrease as well. This capture range for
the deblocking reaction is not an easy
parameter for the resist chemist to manip-
ulate, but it can be adjusted. There is a
consequence, however. The rate of the
deblocking reaction is a strong function of
this capture range. In fact, assuming that
the amplification reaction is in the diffu-
sion-limited regime, the amount of amplifi-
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cation will be controlled by the amplifica-
tion factor αf which is proportional to both
a and the diffusion length squared:

(19)

where G0 is the initial PAG concentra-
tion and NA is Avogadro’s number. To keep
line-edge roughness small for smaller fea-
tures, both the diffusion length and the
reaction capture range should be lowered
in proportion to L. But this means that the
amplification factor will decrease as L3.
Lower amplification factor will require
increased exposure dose to cause the
same amount of amplification, meaning

that dose would have to rise dramatically
to keep LER low in the presence of shrink-
ing feature sizes. There is one other term,
however, that can slow this unfortunate
scaling relationship. By increasing the PAG
loading G0, the amplification factor can be
kept higher while diffusion and capture
range are decreased. There are very real,
practical limits to PAG loading, however,
and it is doubtful that this lever will pro-
vide sufficient long-term relief. It seems
that the fundamental stochastic nature of
resist chemistry creates a need for much
higher exposure dose to keep small fea-
tures from being dominated by LER.

The LER model presented here can also
be used to investigate the impact of expo-
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sure dose and the exposure dose/thermal
dose trade-off on LER. Figure 3 shows the
impact of dose on LER, keeping all other
parameters of the process constant and
letting σ0 = 0. Since the entire process is
held constant except exposure dose, this
changing LER will be accompanied by 
a large change in the resulting feature
dimension as well. Figure 4 shows a more
interesting case where both the exposure
dose and the thermal dose (PEB condi-
tions) were adjusted to keep the level of
deprotection constant (〈m〉 = 0.5), and thus
the resultant feature width constant. The
results show that there is an optimum
trade-off between exposure dose and ther-
mal dose to keep the LER at a minimum.
Higher doses will not always result in lower
LER. Note, however, that the acid diffusion
length was kept constant in these calcula-
tions. In reality, changing the thermal dose
will most certainly result in a change in
acid diffusion length as well.

7. Conclusions
In this paper, an attempt has been

made to develop a comprehensive sto-
chastic model for LER based on deriving
approximate expressions for the variance
and correlations that occur at each step 
in the lithography process. While some
progress has been made, the resulting
model is far from complete.

The work begins with photon shot
noise. Speckle has not been discussed
here, though recent studies have made
very good progress in understanding this
phenomenon for 193nm lithography.[17,18]
Along with chemical concentration shot
noise, the result is a Poisson distribution.
Combining these distributions with the
probability of absorption and exposure
gives a nearly Poisson acid shot-noise dis-
tribution. Reaction diffusion provides an
incredibly interesting and important result:
Diffusion of the reaction catalyst means
that the uncertainty in the effective acid
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concentration is reduced whenever the
acid diffusion length is greater than the
von Smoluchowski trap radius. Thus, acid
(catalyst) diffusion reduces stochastic
uncertainty in the effective acid concen-
tration. Since, however, increased acid dif-
fusion also degrades the acid gradient,
there is an optimum diffusion length for
minimizing LER. The trade-off between
and exposure dose and thermal dose
affects the optimum latent image gradi-
ent, and thus contributes to LER as well.
For any given resist and feature size, there
will be an optimum balance of exposure
dose and thermal dose (PEB conditions)
to minimize LER.

Development is likely to be a very 
significant generator of roughness.
Unfortunately, our current understanding
of how development dynamically rough-
ens a surface is insufficient to include
these effects in the present model. It
seems likely that the polymer molecule
size will bring with it the volume scale
required to turn the variance expressions
derived in this paper into quantitative 
predictors of LER.

Since the very early days of semicon-
ductor manufacturing, researchers have
attempted to predict the limits of optical
lithography. As barriers to improvements in
resolution were discovered, novel means 
of defying the limits were inevitably found.
Stochastic limits to resolution, in the form
of line-edge roughness, may be the most
fundamental limit to lithographic resolu-
tion. It is unclear how low line-edge rough-
ness can be pushed, but progress in reduc-
ing LER has been painfully slow over the
last decade. A comprehensive and physi-
cally accurate stochastic model of lithogra-
phy is needed before the ultimate limits of
optical lithography will be known, and
eventually reached.
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