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Abstract. The concepts of dynamical scaling in the study of kinetic rough-
ness are applied to the problem of photoresist development. Uniform,
open-frame exposure and development of photoresist corresponds to the
problem of quenched noise and the etching of random disordered media
and is expected to fall in the Kadar-Parisi-Zhang (KPZ) universality class
for the case of fast development. To verify this expectation, simulations
of photoresist development in 1 + 1 and 2 + 1 dimensions were carried
out with various amounts of random, uncorrelated noise added to an oth-
erwise uniform development rate. The resulting roughness exponent α
and the growth exponent β were found to match the KPZ values nearly
exactly. The impact of the magnitude of the underlying development ran-
domness on the values of these exponents was also determined, and
an empirical expression for predicting the kinetic roughness over a wide
range of conditions is presented. C© 2010 Society of Photo-Optical Instrumentation
Engineers. [DOI: 10.1117/1.3494607]
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1 Introduction
Stochastic models of lithography consider fundamental
events such as the absorption of a photon or the chemi-
cal reaction of a molecule as stochastic events. As such,
these events are described probabilistically, with the mean-
field “rate” equation describing the probability that the event
occurs. Of course, such a probabilistic description will not
make deterministic predictions—instead, quantities of inter-
est will be described by their probability distributions, which
in turn are characterized by their moments, such as the mean
and variance. While stochastic modeling has been success-
fully applied to photoresist exposure and post-exposure bake
processes in recent years,1, 2 the stochastic behavior of resist
dissolution is much less understood.3 Ultimately, the final
result will be a roughness of the resist feature sidewalls that
leads to line-edge roughness (LER) and linewidth rough-
ness (LWR) of the resist feature. One common approach
to studying LER formation is through the use of Monte
Carlo simulations4–6 and mesoscale modeling.7 While Monte
Carlo methods can be extremely useful, there is also a need
for the development of simple, analytical expressions that
capture the essence of the LER formation mechanisms. One
approach to studying the stochastic nature of photoresist dis-
solution, which will be employed here, involves the charac-
terization of scaling relationships as a means for elucidating
fundamental mechanisms.8

Since the final LER of a high-resolution lithographic fea-
ture will include all resist and aerial image contributions,
studying LER to extract the contribution of only resist de-
velopment can be difficult. A simpler approach is to remove
the aerial image from the experiment and study the resist
surface roughness after a uniform open-frame exposure and
development. The use of surface roughness after open-frame
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exposure and development as a probe for understanding the
stochastic nature of resist development will be examined in
detail in this paper. In particular, an analysis approach known
as dynamical scaling will be applied to photoresist develop-
ment, and simulated open-frame dissolution results will be
analyzed in this way.

2 Dynamical Scaling
Over the last 25 years, fractal concepts have been successfully
applied to the appearance of roughness in surface growth
phenomenon,9 with many applications including deposition
and etching. Called disorderly surface growth or kinetic
roughness, research has focused on determining how exper-
imental roughness or the roughness predictions of specific
models scale with time and distance. While the magnitude of
the roughness is unique to the specific experiment or model
and their circumstances/parameters, the scaling behavior of
the roughness tends to be more universally applicable to
a wide range of conditions as long as the basic mecha-
nism remains consistent. This section will review current
understanding of kinetic roughness as applied to a simple
lithographic case: open-frame exposure and development of
photoresist.

Open-frame exposure of photoresist coated on a planar
wafer leads, after development, to a certain resist height re-
maining, h. Including the effects of roughness, this surface
height will be a function of wafer position, h(x, y). If the
possibility of overhangs is ignored, this surface height will
be a single-valued function. (The validity of this assumption
will be explored shortly.) Such surfaces are expected to be
(or eventually become) self-affine, since the nominally ver-
tical direction of the isotropic development will cause the
z dimension (the height dimension) of the resist surface to
scale differently from the x-y dimensions. For a statistical
self-affine surface, the surface is characterized by statistical

J. Micro/Nanolith. MEMS MOEMS Oct–Dec 2010/Vol. 9(4)041202-1



Mack: Stochastic modeling of photoresist development in two and three dimensions

properties. The RMS surface height difference, often called
the interface width or the surface roughness, of a statistically
self-affine surface scales with the measurement length L as

σw ∝ Lα, (1)

where α is called the roughness exponent. As you will see,
however, resist surfaces are self-affine only over a region
smaller than the correlation length of the roughness.

For the development of a uniform, open-frame exposure
of photoresist, the resist surface is initially perfectly smooth.
But as development proceeds, stochastic effects lead to an in-
creased roughening of the surface. Thus, the statistical prop-
erties of the interface [the mean height 〈h〉 and the amount
of roughness σ w] are a function of time. Ignoring absorp-
tion so that the resist receives a uniform exposure through its
depth (and assuming a perfect antireflection coating so that
no standing waves are present), the mean development rate
will be constant. Thus, the mean surface height will scale
linearly with time. Empirically, many problems in etching
and deposition show a roughness that, for moderately small
times, grows as

σw ∝ tβ, (2)

where β is called the growth exponent. The growth in rough-
ness as development proceeds does not continue indefinitely.
For a given measurement size L, the interface roughness satu-
rates after a long enough time. However, since the roughness
varies with L according to Eq. (1), the point of saturation with
development time depends on the size of the measurement
region. The overall scaling can be summarized as10

σw ∝ Lα f

(
t

Lz

)
, (3)

where f (u) =
{

uβ u � 1

1 u � 1
,

and z = α/β is called the dynamic exponent. The proper
choice of α and β allows dynamic roughness data [σ w(L, t)]
to collapse to a single universal curve for all L, giving a very
sensitive method for determining these exponents.

For our problem, the source of interface roughness is a
statistical uncertainty in the resist development rate r as a
function of position. Thus, the development rate can be sep-
arated into a mean dissolution rate plus a random variable η:

r (x, y, h) = 〈r〉 + η(x, y, h). (4)

Obviously, η has been formulated to have zero mean, and its
standard deviation is σ r. It is very important to note that even
if the underlying noise is uncorrelated, the resulting rough
resist surface will exhibit height-to-height correlations. The
cause of these correlations is the isotropic nature of dis-
solution. If, due to random fluctuations, one point in the
resist interface develops down more quickly than the rest,
this dimple in the resist surface will begin to spread lat-
erally. Thus, the neighboring points on the interface will
have a resist height that is correlated with the original fast-
developing point. The typical distance over which heights
interact is called the parallel correlation length, ξ ‖. Initially,

this x-y plane correlation length is small, but it grows with
time as9

ξ|| ∝ t1/z . (5)

The correlation length cannot grow to more than the mea-
surement domain, so that eventually it saturates at L.

Another approach to characterizing the roughness of a
surface is to determine its power spectral density (PSD), the
magnitude squared of the Fourier transform of the relative
surface height:

PSD( f ) = lim
L→∞

1

L2

∣∣∣∣
∫ L/2

−L/2

∫ L/2

−L/2
h̃(x, y)

× exp[−i2π ( fx x + fy y)]dxdy

∣∣∣∣
2

, (6)

where f = ( f 2
x + f 2

y )1/2, and h̃ = h − 〈h〉. The self-affine
scaling hypothesis of Eq. (3) can be translated into a scaling
relationship for the surface roughness PSD. In the long-time
limit and the long-wavelength limit, we expect that11, 12

PSD( f ) ∝ 1

f d+2α
, (7)

where a d + 1 dimensional problem is characterized by a
d-dimensional interface. Thus, d = 2 for the case of open-
frame exposure and development of photoresist.

3 The KPZ Equation
The evolution of a resist surface under the assumption of a
surface-rate-limited reaction mechanism during dissolution
can be described by a simple differential equation. Since r is
the development rate normal to the resist surface, the rate at
which the surface height at a specific (x, y) point changes is
given by

−∂ h

∂ t
= r (1 + |∇h|2)1/2, (8)

where ∇h is the gradient along the resist surface and rep-
resents the maximum slope of the interface at a given (x,
y) point. If the surface is essentially horizontal with a small
amount of roughness, |∇h|2 � 1, and this equation can be
approximated as

−∂h

∂t
≈ r + r

2
|∇h|2 . (9)

Combining with Eq. (4) and assuming that the noise level is
low (σ r�r),

−∂h

∂t
≈ 〈r〉 + 〈r〉

2
|∇h|2 + η. (10)

This result is a simplification of a common stochastic growth
model called the Kadar-Parisi-Zhang (KPZ) equation.13 In
its full form, the KPZ equation is generally written as

∂ h̃

∂t
= ν∇2h̃ + λ

2

∣∣∇h̃
∣∣2 + η, (11)

where λ = 〈r〉, h̃ = 〈r〉 t − h, and ν is a surface tension or
diffusion term that relaxes the interface and contributes to
smoothing. Lithography simulators assume ν = 0, but it is
possible that there is some relaxation mechanism at work in
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Fig. 1 1 + 1 simulations of open-frame resist surface roughness with 〈r 〉 = 10 nm/s and σ r = 2 nm/s (Gaussian distribution). L was var-
ied from 16 nm (lower curve) to 2048 nm (upper curve) in powers of 2. (a) Results from a single simulation, and (b) the average
of 500 simulations.

actual development. Here, we will assume that the nonlinear
terms dominate (both the |∇h|2 and η terms are nonlinear)
and that ν is very small (that is, we are in the so-called
strong-coupling limit).

For high-temperature deposition and etching processes,
η in the KPZ equation is dominated by thermal noise—
that is, it is a random variable in time. For the case of
resist development, however, the noise is a spatial varia-
tion in development rate that, for a given resist instantia-
tion, does not vary with time. Kessler et al. described this
type of noise as quenched.14 Materials that exhibit quenched
noise are called disordered media or random disordered me-
dia. If, however, the dissolution rate is moderately high, the
quenched noise varies with time since the value of z varies
with time: η(x, y, z) = η(x, y, h) ≈ η(x, y, 〈r〉 t). As such,
in this “fast” developing regime, dissolution with quenched
noise is expected to be in the same universality class as the
KPZ equation with thermal noise. In the d = 1 case, the
KPZ exponents can be determined exactly using renormal-
ization group techniques9, 15, 16 to be α = 1/2 and β = 1/3. For
d = 2, however, an exact determination of the exponents is
not possible. For the case where ν is small, where L � σw ,
and where the underlying quenched noise is uncorrelated,
Hentschel and Family17 have shown that a d = 2 interface
should have α = 0.4 and β = 0.25, in agreement with sim-
ulation results by Kim and Kosterlitz.18 In general, scaling
arguments (reinforced by renormalization group methods)
show that α + z = 2 in all dimensions9 (sometimes referred
to as Galilean Invariance).

4 Simulations of Photoresist Development
Simulation was used to predict the resist height as a
function of development time for an open-frame expo-
sure/development in the presence of stochastic dissolution
rate noise. The dissolution rate of the photoresist followed
Eq. (4), with a mean 〈r〉 and stochastic term η, set to be an
uncorrelated, Gaussian-distributed random variable of stan-

dard deviation σ r. Since development rate can never be less
than zero, the noise term was symmetrically limited so that
r was always between 0 and 2〈r〉. The initial study consid-
ered the d = 1 case, with a maximum L = 2048 nm and
a resist thickness of 10,000 nm. The simulation grid was
1 nm in both x and z. A level-set algorithm19 was used to turn
the r (x, z) data into a resist surface as a function of devel-
opment time. Linear variation of development rate between
grid points was assumed, and repeating boundary conditions
in x and y were used.

Development time was varied from 2 s to the time needed
to clear the resist in increments of 2 s. At each development
time, the mean and standard deviation of the resist height h(x)
was determined. Since the development algorithm is capable
of predicting overhangs in the resist surface, these overhangs
were ignored by setting h(x) to be the first surface encoun-
tered when looking up from the substrate. (This is equiva-
lent to eroding the overhangs to create a single-valued resist
height function.) L was varied by taking the 2048-nm width
and breaking it up into two 1024-nm regions, four 512-nm
regions, etc., down to 16-nm-sized regions. When multiple
regions were cut from the one simulation, the analysis results
were averaged over these regions.

An example of the results of these simulations with 〈r〉 =
10 nm/s and σ r = 2 nm/s (Gaussian distribution) is shown in
Fig. 1. Figure 1(a) shows the results of a single simulation,
and Fig. 1(b) shows the average of 500 simulations. By set-
ting the roughness and growth exponents to their expected
KPZ d = 1 values (α = 1/2, β = 1/3), the data of Fig. 1(b)
collapses into one universal curve, as shown in Fig. 2. (This is
accomplished by simply plotting the scaled values of rough-
ness, σ w/Lα , versus the scaled development time, t/Lz.) This
is compelling evidence that the photoresist etching mech-
anism follows the KPZ universality class, as expected for
the case of uncorrelated noise and a moderately large value
for 〈r〉.

Simulations such as those shown in Fig. 2 were repeated
as σr/〈r〉 was varied from 0.02 to 0.28. For each value of
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Fig. 2 The data from Fig. 1(b) collapse to a single curve using
α = 1/2 and β = 1/3.

σr/〈r〉, the α and β exponents were adjusted to give the
best collapse of the data into a single curve. The errors in
determining α and β in this way were estimated by varying
these exponents until the data collapse was notably worse.
Figure 3 shows the resulting values of α and β. Gaussian-
distributed development rate noise was used in all cases, but
repeating the simulations with uniformly distributed noise
produced almost identical results.

Simulations in 2 + 1 dimensions were also carried out,
although L was limited to 512 nm and the resist thickness
was 2000 nm. The development time increment was set to
1 s. The resulting values of α and β are shown in Fig. 4, and
they match well with expected KPZ values of α = 0.4 and
β = 0.25.

While overhangs were ignored in the analysis of the scal-
ing exponents given earlier, the number of overhangs in the
simulations shown earlier was measured and is shown in
Fig. 5. The number of overhangs is defined as the number of
x [or (x, y)] points above which an overhang can be seen. As
expected, the number of overhangs grows rapidly as σr/〈r〉
increases. No overhangs were detected when σr/ 〈r〉 < 0.12.
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Fig. 3 The variation of α and β in 1 + 1 dimensions as a function of
the relative magnitude of the underlying development rate noise.
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Fig. 4 The variation of α and β in 2 + 1 dimensions as a function of
the relative magnitude of the underlying development rate noise.

The 2 + 1 simulations showed roughly 15% more overhangs
per 1000 grid points than the 1 + 1 simulations.

The impact of 〈r〉 and σ r on the mean resist height was
also examined. According to Eq. (10), the rate at which the
mean resist height decreases with time is slightly greater than
the mean dissolution rate due to the nonzero resist surface
gradient:

−∂〈h〉
∂t

= 〈r〉 + 〈r〉
2

〈|∇h|2〉 so that

1

2

〈|∇h|2〉 = − 1

〈r〉
∂〈h〉
∂t

− 1. (12)

By measuring the slope of the mean resist height versus de-
velopment time curve from the simulations, the mean square
resist surface gradient can be determined.

To study this effect, the mean square gradient of the re-
sist surface was calculated from the simulation results using
Eq. (12). The results are shown as the data points in Fig. 6.
Empirically, the mean squared surface gradient is found to
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Fig. 5 The number of overhangs detected per 1000 grid points for
both 1 + 1 (solid line) and 2 + 1 (dashed line) simulations.
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Fig. 6 Plots of the mean square gradient, 〈|∇h|2〉, as a function
of the relative dissolution rate standard deviation. Data points are
simulation results; solid lines are from the empirical expression of
Eq. (13).

scale as

〈|∇h|2〉 ∼
(

σr

〈r〉
)1.67

. (13)

This empirical model is shown in Fig. 6 as the solid curves.
The power spectral density approach was also applied to

the rough surfaces generated in the preceding 1 + 1 simu-
lations. Figure 7 shows a typical result. The linear (mid- to
high-frequency) region follows the self-affine behavior of
Eq. (7), allowing the roughness exponent α to be extracted.
At the highest frequencies, the resolution limit (grid size)
of the simulation causes a loss of information and a result-
ing leveling off of the PSD. The low-frequency leveling of
the PSD occurs for wavelengths greater than the correla-
tion length of the roughness. If the correlation length can be

extracted from the PSD for different development times, a fit
to Eq. (5) will give the exponent z.

Typically, the correlation length is defined using the auto-
correlation function for the rough surface. Empirically, many
systems exhibit autocorrelation behavior that can be well
modeled as20

R(τ ) = lim
L→∞

1

L

∫ L/2

−L/2
h(x)h(x + τ ) dx

≈ σ 2 exp[−(|τ |/ξ‖)2α], (14)

where the 1 + 1 dimension definition of the autocorrelation
function is shown here. Since the process can be treated
as a wide-sense stationary random process (〈h〉 and σ w do
not vary with position), the PSD is the Fourier transform
of the autocorrelation function. For the 1 + 1 dimension case
(d = 1) and with α = 0.5, this Fourier transform can be carried
out analytically using the model autocorrelation function of
Eq. (14):

PSD( f ) = 2σ 2ξ||
1 + (2π f ξ||)2

. (15)

The form of Eq. (15), along with the self-affine behavior of
Eq. (7), inspires a form of the PSD for general values of d
and α:

PSD( f ) = PSD(0)

1 + (2π f ξ||)d+2α
. (16)

In a simulation with a nonzero grid size (or a measure-
ment with a resolution limit), the high-frequency response is
limited by a resolution noise limit. Assuming that this reso-
lution limit results in white noise added in quadrature to the
PSD, a final semiempirical expression should describe well
the observed PSD:

PSD( f ) = a

[(
1

f s
c + f s

)2

+
(

1

f s
n

)2
]1/2

, (17)

where a is a constant, s = d + 2α = the slope of the linear
portion (on a log-log scale) of the PSD, fc = 1/(2πξ||), and
fn is the high-frequency limit (resolution noise limit) of the
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Fig. 7 Power spectral density (PSD) results for 1 + 1 simulations of open-frame resist surface roughness with 〈r 〉 = 10 nm/s and σ r = 2 nm/s
(Gaussian distribution) and a development time of 9 s: (a) results from a single simulation, and (b) the average of 6000 simulations.
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Fig. 8 Fitting the PSDs resulting from simulations for different devel-
opment times allows the correlation length to be extracted (symbols).
A fit of correlation length versus development time to Eq. (5) gives
the dynamic exponent, z (line).

simulation due to the grid size (which is assumed to be much
larger than fc).

Over a range of development times from 9 to 900 s, the
extracted value of α (from the best fit slope s) was in the
range of 0.483 to 0.498 (compared to the expected value of
0.5). Fitting the resulting correlation length versus develop-
ment time to Eq. (5) gave z = 1.52 (compared to the expected
value of 1.5) and β = 0.32 (expected value of 1/3). Figure 8
shows these results. The noise limit was determined to be
1/fn ≈ 2.4 nm for a grid size of 1 nm, about equal to the
inverse of the Nyquist critical frequency (twice the grid
spacing).

5 Discussion of Results
Simulation results presented in the previous section clearly
show that a straightforward surface-limited dissolution/etch
model falls into the KPZ universality class when the disso-
lution rate is sufficiently high. The collapse of data into a
single curve as shown in Fig. 2 confirms the Family-Vicsek

scaling of Eq. (3), with the resulting roughness and growth
exponents matching the expected KPZ results. But while
Eq. (3) expresses the limits of small and large time behavior
of the surface roughness, the simulations done in this work
follow a very specific scaling function that remains the same
for all of the conditions simulated in both 1 + 1 and 2 + 1
dimensions. The data from Fig. 2 and all other simulations
done for this work can be fit extremely well by the following
empirically determined expression:

σ̂ = σ̂sat

[
1 + t̂x

t̂

]−β

, (18)

where σ sat is the saturation (long time) value of the sur-
face roughness, tx is the cross-over time between the rough-
ness growth and saturation regimes, and the hat over the
variable represents the Family-Vicsek scaled versions of the
quantities:

σ̂ = σw

Lα
, t̂ = t

Lz
. (19)

It is easy to see that Eq. (18) satisfies the basic scaling re-
quirements of Eq. (3). Equation (18) also shows that four
parameters, α, β, σ̂sat, and t̂x , completely describe the dy-
namic roughness behavior for all L and t. The dependence
of the scaling exponents on the magnitude of the underly-
ing development rate randomness were shown in Figs. 3 and
4. By fitting Eq. (18) to the scaled data, best-fit values of
σ̂sat and t̂x were also generated. These results are shown in
Figs. 9 and 10.

The universal curve of Eq. (18) provides a predictive ca-
pability for the resulting surface roughness given the four
parameters α, β, σ̂sat, and t̂x . The two scaling exponents α
and β are known approximately based on their KPZ univer-
sality class, but have been shown here to vary slightly (and
about linearly) with σr/ 〈r〉. The remaining two parameters
σ̂sat and t̂x vary significantly with σr/ 〈r〉. It will be interesting
to see whether the form of Eq. (18) could be derived based
on physical arguments and whether this form is appropriate
for other dynamic scaling problems.
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Fig. 9 The variation of (a) t̂x and (b) σ̂sat as a function of the relative development rate noise, σr / 〈r 〉, for the 1 + 1 dimension case.
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6 Conclusions
In this work, the concepts of dynamical scaling were em-
ployed to study the growth of surface roughness during pho-
toresist development. All evidence suggests that resist sur-
faces become self-affine over length scales less than a few
correlation lengths and are governed by the scaling laws com-
monly used in the study of kinetic roughness. This scaling is
characterized by two basic exponents, the roughness expo-
nent α and the growth exponent β. The simple experiment of
open-frame (uniform) exposure and development followed
by measurement of the mean thickness and RMS surface
roughness is a powerful tool for extracting these exponents
and confirming the applicability of dynamical scaling.

Simulation of development in 1 + 1 and 2 + 1 dimensions
also shows very nicely that the expected scaling behavior
is followed. Additionally, and not unexpectedly, these 1 + 1
simulations match the KPZ universality class almost per-
fectly, giving α ≈ 1/2 and β ≈ 1/3. In 2 + 1 dimensions,
simulations match the KPZ universality class in the strong-
coupling limit, giving α ≈ 0.40 and β ≈ 0.25. The match to
this universality class is not exact, however, since the trans-
formation from quenched random noise (spatial variations)
to thermal noise (temporal variations) under fast developing
conditions is not exact. As a result, α and β vary slightly
with the relative magnitude of the underlying development
rate uncertainty.

While the Family-Vicsek scaling of Eq. (3) is a founda-
tion for the dynamical scaling approach to kinetic roughness
formation, little work has been done on establishing the exact
form of the function in Eq. (3) for any specific case. Here,
an empirical function is proposed in Eq. (18) that matches
all of the simulation data generated for this paper in both
1 + 1 and 2 + 1 dimensions. As a result, the surface rough-
ness can be predicted for any development time and domain
size once the four parameters of this expression have been
determined. While two of those parameters, α and β, are es-
sentially determined by the universality class of the problem
(varying only slightly with the specific conditions of the ex-
periment), the remaining two parameter values are particular
to the problem—that is, to the value of σr/ 〈r〉.

Much future work is needed to fully apply the concepts of
dynamical scaling to photoresist development. In particular,
the simulations shown here are for reasonably fast develop-
ment (small values of σr/ 〈r〉). It is unclear whether slower
development rates will still exhibit KPZ scaling behavior, and
this important region of response will be simulated in future
work. Further, simulations using correlated development rate
noise should show whether kinetic roughness during develop-
ment dominates the final lithographic roughness or whether
the underlying development rate noise, coming from earlier
stochastic processes such as exposure and reaction-diffusion,
controls the final surface characteristics. Last, a thorough
understanding of the uniform, open-frame development case
will lead the way to the more difficult and interesting case of
roughness formation during development in the presence of
a steep development rate gradient, as is found at the edge of a
photoresist line, and low mean development rates. Of course,
experimental data with which to compare these simulation
results is needed and should also be furnished in the future.
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