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Abstract 
BACKGROUND:  Resist models for full-chip lithography simulation demand a difficult compromise 
between predictive accuracy and numerical speed. 
METHODS:  Using a Gaussian approximation to the shape of the image-in-resist in the region of 
development near a feature edge, the integral normally solved numerically in the Lumped Parameter Model 
(LPM) can be evaluated analytically.  As a result, a well known three-dimensional resist model (the LPM) 
can be used in only two-dimensions (the Gaussian LPM), greatly improving speed without significant loss of 
accuracy. 
RESULTS:  For a positive resist, the image in the region of soluble resist material can be well approximated 
by a Gaussian image for all the mask features investigated.   
CONCLUSIONS:  The Gaussian LPM is expected to have accuracy similar to the LPM but with 
substantially greater speed. 
 
Keywords:  Lumped Parameter Model, LPM, full-chip simulation, compact resist model, optical proximity 
correction, OPC 
 
I. INTRODUCTION 
 
 Many computational lithography problems require fast, accurate resist models (often called compact 
models) to enable lithography simulation of an entire chip in a reasonable time.  While rigorous resist 
simulators solve physically-based models in three dimensions, compact models simplify their descriptions of 
the phenomena and reduce the problem to two dimensions.  The result is a dramatic increase in speed, but 
also some loss in accuracy.  Further, the resulting compact models are often more empirically than physically 
based, so that model parameters are hard to relate to readily observed properties of the lithography process.  
More importantly, though, the use of multi-parameter empirical models can produce a very good match to 
lithography data during calibration, while exhibiting a poorer match to experiment for other mask patterns 
(e.g., during model validation).  The growing need for full-chip process window prediction only exacerbates 
these predictive accuracy problems. 
 
 One of the most commonly used compact models of resist behavior is (with many variants) the 
variable threshold resist model (VTR).  For example, one might define a variable threshold that is a simple 
polynomial function of the maximum local intensity and maximum local slope near to and perpendicular to 
the feature edge,1 or a polynomial function of the maximum local intensity, minimum local intensity, image 
slope at the mask edge, and the mask CD.2  Usually polynomials out to second order are sufficient, and some 
cross terms may be included.  The coefficients of these polynomials are determined empirically by 
comparison with experimental through-pitch CD data in a step called model calibration. 
 
 There are two main disadvantages of these empirical models.  First, the accuracy of the predictions 
made by the VTR models are only expected to be sufficient when interpolating within the range of features 
used to calibrate the model.  Thus, considerable effort is spent in determining the appropriate range of 
features used to calibrate the models and whether they are representative of any given mask design.3,4  
Second, any change in the resist process (or even the mask making process) will likely change the model 
coefficients in some unknown way.  Thus, a change in process must be accompanied by an expensive 
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recalibration exercise.  Thus, there is a desire to use simple, high-speed compact resist models that have a 
more straightforward physical interpretation so that these two disadvantages can be mitigated. 
 
 In this paper a new compact resist model, called the Gaussian Lumped Parameter Model, is 
introduced.  This model is based on the well-known three-dimensional Lumped Parameter Model (LPM), but 
with one dimension (the depth direction into the resist) solved analytically so that a two-dimensional model 
is obtained.  The resulting Gaussian LPM is potentially fast enough for full-chip simulation applications, 
while providing physically-based resist parameters which may address some of the drawbacks of 
conventional compact resist models. 
 
II. A NEW COMPACT RESIST MODEL – THE GAUSSIAN LPM 
 
 The Lumped Parameter Model (LPM) has been used when a simple model with both speed and 
accuracy is required.5  This model performs a very simplified calculation of resist development in three 
dimensions that produces an accuracy intermediate between rigorous resist models and compact two-
dimensional models such as a VTR.  The LPM makes two basic assumptions:  the resist contrast, γ, is 
independent of dose, and the path of dissolution can be segmented into vertical followed by horizontal 
development steps.  The result is a prediction of edge position as a function of dose for a given image in 
resist.6  Given an aerial image I(x), 
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Here, E(x) is the dose required to put the resist edge at position x, x0 is the position where the development 
path begins (for example, the center of the space in a line/space pattern), and Deff is the effective resist 
thickness.  If the center of the space is at x0 = 0, then the resulting critical dimension (CD) or the space will 
be 2x.  There are two resist/process parameters in this model that must be calibrated:  γ and Deff.  More 
advanced versions of the LPM have also been proposed.7,8 
 
 The numerical integration required of the LPM is too time consuming for many modeling 
applications.  However, this integration can be carried out analytically by noting that in the clear region of an 
image, near the edge of a line, the aerial image (and the image-in-resist) can be well approximated as a 
Gaussian function.9   
 

( ) 22
0 2/

0)( σxxeIxI −−=  (2) 

 
Since only the space region develops away in a positive resist to form the resist profile, an accurate 
representation of the image is needed only in this region that develops away.  Treating I0, x0, and σ of the 
Gaussian as adjustable parameters, equation (2) can readily be fit to an actual aerial image (keeping in mind 
that only a region near the feature edge, and particularly in the space near the feature edge, must fit well).  
Figure 1 shows the fit of a Gaussian to dense and isolated lines.  The log-slope of the Gaussian image at any 
x-position is 
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Thus, the log-slope varies linearly with x, a result that is approximately true for most images in the region of 
the space.9   
 
 Using the Gaussian image in the LPM equation (1) and letting the development path start at x = x0 
(set to zero here for convenience), 
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The integral is solvable in terms of the Dawson’s integral10, Dw(z): 
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Dawson’s integral has a maximum value of about 0.54 at z ≈ 0.92 and asymptotically goes to 1/2z for large z 
(see Figure 2).  Numerous approaches for computing or approximating Dawson’s integral are available,11,12 
as are tables of values.13  The LPM result becomes 
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where E0 is the resist dose-to-clear, and 
22σ

γ=g .   

 
 

    
 (a) (b) 

Figure 1. Fit of a Gaussian (solid line) to image-in-resist (dashed lines) for (a) dense and (b) isolated mask 
patterns (NA = 1.2, λ = 193nm, Dipole 0.8/0.3 Y-polarized illumination, 50nm line feature, binary 
Kirchhoff mask).  
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Figure 2. A plot of Dawson’s Integral, Dw(z). 
 
 
III. USING THE GUASSIAN LPM 
 
 In the form of equation (6), the Gaussian LPM predicts the dose required to give a particular CD.  To 
be useful for OPC applications, the model must be inverted to give the CD (or rather, the x-position of the 
resist edge) obtained for a given dose.  First, the dose is calibrated to give the proper feature size for the 
chosen reference feature.  Using the Gaussian fit of the image for this reference, we calculate the quantity 
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Using the Gaussian image of equation (2) in equation (6) and rearranging, we have the form of the Gaussian 
LPM ready to be inverted: 
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The left-hand side takes on a numerical value for a given calibrated process and Gaussian image.  The right 

hand side of equation (8) can be tabulated as a function of xg .  Thus, the value of x (the edge position) can 

be found by simple interpolation within the table.  A plot of this interpolation data is shown in Figure 3. 
 
 The accuracy of the Gaussian LPM depends on two things:  the accuracy with which a Gaussian 
function fits an image in the region of development near a feature edge, and the accuracy of the LPM itself.  
The accuracy of the LPM has been previously discussed.14  Both topics require further characterization using 
actual mask designs and wafer data. 
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Figure 3. A plot of the interpolation data needed to solve equation (8). 
 
 
IV. CONCLUSIONS 
 
 The Gaussian LPM provides a convenient and accurate way to convert the three-dimensional 
Lumped Parameter Model into a two-dimensional model that is far more practical for full-chip lithography 
simulation.  The model works by first fitting a one-dimensional slice of the image-in-resist (perpendicular to 
the feature edge) to a Gaussian, extracting three image parameters.  Then, using a resist model with two 
parameters, the edge position of the resist edge is extracted from the Gaussian LPM model of equation (8).  
In this way, the Gaussian LPM works like a more physically rigorous variable threshold model.  Techniques 
commonly used in OPC software to account for non-development resist effects, such as convolution of the 
image with a diffusion blur function, can easily be applied to the Gaussian LPM as well.  Validation of this 
model for both sufficient speed and sufficient predictive accuracy for OPC applications has yet to be 
performed. 
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