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Abstract

BACKGROUND: Resist models for full-chip lithography simutati demand a difficult compromise
between predictive accuracy and numerical speed.

METHODS: Using a Gaussian approximation to the shapehef image-in-resist in the region of
development near a feature edge, the integral dlyrs@ved numerically in the Lumped Parameter Mode
(LPM) can be evaluated analytically. As a resaltyell known three-dimensional resist model (thévil.P
can be used in only two-dimensions (the Gaussidv)LBreatly improving speed without significant $osf
accuracy.

RESULTS:. For a positive resist, the image in the regibaaduble resist material can be well approximated
by a Gaussian image for all the mask features tigated.

CONCLUSIONS: The Gaussian LPM is expected to have accuragylasi to the LPM but with
substantially greater speed.

Keywords: Lumped Parameter Model, LPM, full-chip simulati@@ompact resist model, optical proximity
correction, OPC

[. INTRODUCTION

Many computational lithography problems requirgt faccurate resist models (often called compact
models) to enable lithography simulation of an rentthip in a reasonable time. While rigorous tesis
simulators solve physically-based models in thiesdsions, compact models simplify their descrimiof
the phenomena and reduce the problem to two dilmesisi The result is a dramatic increase in spegd, b
also some loss in accuracy. Further, the resuttimypact models are often more empirically tharsptajly
based, so that model parameters are hard to telagadily observed properties of the lithographycpss.
More importantly, though, the use of multi-parametmpirical models can produce a very good match to
lithography data during calibration, while exhibgi a poorer match to experiment for other maskepagt
(e.g., during model validation). The growing ndedfull-chip process window prediction only exacates
these predictive accuracy problems.

One of the most commonly used compact models sistréoehavior is (with many variants) the
variable threshold resist model (VTR). For examplge might define a variable threshold that isnapke
polynomial function of the maximum local intensépd maximum local slope near to and perpendicolar t
the feature edgepr a polynomial function of the maximum local insity, minimum local intensity, image
slope at the mask edge, and the mask Gsually polynomials out to second order are sigfit, and some
cross terms may be included. The coefficients hefsé polynomials are determined empirically by
comparison with experimental through-pitch CD data step called model calibration.

There are two main disadvantages of these embpiriodels. First, the accuracy of the predictions
made by the VTR models are only expected to becsrfit when interpolating within the range of fea
used to calibrate the model. Thus, consideralfiertefs spent in determining the appropriate raofe
features used to calibrate the models and whetiey are representative of any given mask de¥ign.
Second, any change in the resist process (or éiemask making process) will likely change the nhode
coefficients in some unknown way. Thus, a chamg@rocess must be accompanied by an expensive
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recalibration exercise. Thus, there is a desiras® simple, high-speed compact resist modelshtinat a
more straightforward physical interpretation sd thase two disadvantages can be mitigated.

In this paper a new compact resist model, callegl Gaussian Lumped Parameter Model, is
introduced. This model is based on the well-kndhivee-dimensional Lumped Parameter Model (LPM), but
with one dimension (the depth direction into thsisg solved analytically so that a two-dimensiomaidel
is obtained. The resulting Gaussian LPM is poadigtifast enough for full-chip simulation applicatis,
while providing physically-based resist parametarsich may address some of the drawbacks of
conventional compact resist models.

II. ANEW COMPACT RESIST MODEL — THE GAUSSIAN LPM

The Lumped Parameter Model (LPM) has been used wheimple model with both speed and
accuracy is requiretl. This model performs a very simplified calculatiof resist development in three
dimensions that produces an accuracy intermediatedlen rigorous resist models and compact two-
dimensional models such as a VTR. The LPM makes liasic assumptions: the resist contrgsis
independent of dose, and the path of dissolution lma segmented into vertical followed by horizontal
development steps. The result is a predictiondgieeposition as a function of dose for a given ienag
resist® Given an aerial imaggx),
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Here,E(X) is the dose required to put the resist edge sitipo x, X, is the position where the development
path begins (for example, the center of the spaca line/space pattern), amily is the effective resist
thickness. If the center of the space iyat 0, then the resulting critical dimension (CD)tbe space will
be Z. There are two resist/process parameters inntioidel that must be calibratedy andDg. More
advanced versions of the LPM have also been progdse

The numerical integration required of the LPM i@ ttime consuming for many modeling
applications. However, this integration can beiedrout analytically by noting that in the cleagion of an
image, near the edge of a line, the aerial imagd (he image-in-resist) can be well approximatedh as
Gaussian functiof.

| (x) = 1,670 ) 120 )

Since only the space region develops away in atipesresist to form the resist profile, an accurate
representation of the image is needed only in rdaggon that develops away. Treatihgx,, ando of the
Gaussian as adjustable parameters, equation (2eedity be fit to an actual aerial image (keegimgnind
that only a region near the feature edge, andqudatily in the space near the feature edge, musteil).
Figure 1 shows the fit of a Gaussian to dense soidted lines. The log-slope of the Gaussian inzgay
X-position is
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Thus, the log-slope varies linearly witha result that is approximately true for most ie= the region of
the spacé.

Using the Gaussian image in the LPM equation ) latting the development path starixat X,
(set to zero here for convenience),

Ew) .. 1 P 4%
(@J —1+E£e dx (4)

The integral is solvable in terms of the Dawsontegrat®, Dy(2):

_2Z 5
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Dawson’s integral has a maximum value of about @4~ 0.92 and asymptotically goes to 4f@r largez
(see Figure 2). Numerous approaches for compuatirgpproximating Dawson’s integral are availabfg,
as are tables of valués.The LPM result becomes
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wherek, is the resist dose-to-clear, agdzz—y2 .
o
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Figure 1.  Fit of a Gaussian (solid line) to image-in-resist (dashed lines) for (a) dense and (b) isolated mask
patterns (NA = 1.2, A = 193nm, Dipole 0.8/0.3 Y-polarized illumination, 50nm line feature, binary
Kirchhoff mask).
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Figure 2. A plot of Dawson’s Integral, D,,(2).

[ll. USING THE GUASSIAN LPM

In the form of equation (6), the Gaussian LPM presdthe dose required to give a particular CD. To
be useful for OPC applications, the model mustriverted to give the CD (or rather, the x-positidrire
resist edge) obtained for a given dose. First,dibee is calibrated to give the proper feature &izghe
chosen reference feature. Using the Gaussiahtfieamage for this reference, we calculate thandgity

14
(éj = constant @)

Using the Gaussian image of equation (2) in eqogty and rearranging, we have the form of the Gians
LPM ready to be inverted:

Dyt \/Ellg(éjy —1] =e% Dw(ﬁx) 8)

The left-hand side takes on a numerical value fgivan calibrated process and Gaussian image. righe
hand side of equation (8) can be tabulated asctifumof \/Ex. Thus, the value of x (the edge position) can
be found by simple interpolation within the tabk.plot of this interpolation data is shown in Fig\8.

The accuracy of the Gaussian LPM depends on timggh the accuracy with which a Gaussian
function fits an image in the region of developmeeéar a feature edge, and the accuracy of the LLEB&H.i
The accuracy of the LPM has been previously dismiidsBoth topics require further characterization gsin
actual mask designs and wafer data.
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Figure 3. A plot of the interpolation data needed to solve equation (8).

V. CONCLUSIONS

The Gaussian LPM provides a convenient and aceunaty to convert the three-dimensional
Lumped Parameter Model into a two-dimensional malaat is far more practical for full-chip lithograyp
simulation. The model works by first fitting a edenensional slice of the image-in-resist (perpeualdir to
the feature edge) to a Gaussian, extracting thmegyé parameters. Then, using a resist model with t
parameters, the edge position of the resist edggtiacted from the Gaussian LPM model of equaf@)n
In this way, the Gaussian LPM works like a moregitsily rigorous variable threshold model. Teclueis)
commonly used in OPC software to account for noretibgment resist effects, such as convolution ef th
image with a diffusion blur function, can easily &gplied to the Gaussian LPM as well. Validatidrihis
model for both sufficient speed and sufficient jcede accuracy for OPC applications has yet to be
performed.
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