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Abstract 

 
Measurement of the power spectral density (PSD) of a rough surface or feature involves large 
random and systematic errors.  While random errors can be reduced by averaging together many 
PSDs, systematic errors can be reduced only by carefully studying and understanding the sources 
of these systematic errors.  Using both analytical expressions and numerical simulations for the 
measurement of the PSD of line-edge roughness, three sources of systematic errors are evaluated:  
aliasing, leakage, and averaging.  Exact and approximate expressions for each of these terms are 
derived over a range of roughness exponents, allowing a measured PSD to be corrected for its 
systematic biases.  The smallest measurement bias is obtained when appropriate data windowing 
is used, and when the sampling distance is set to twice the measurement signal width.  
Uncorrected PSD measurements are likely to systematically bias the extracted roughness 
exponent to higher values. 

 
Subject Terms:  power spectral density, PSD, discrete PSD, aliasing, spectral leakage, line-edge 
roughness, linewidth roughness, LER, LWR 
 

1. Introduction 
 
 Line-edge roughness (LER) and linewidth roughness (LWR) in lithography are best characterized by 
the power spectral density (PSD) of the roughness, or similar measures of roughness frequency and 
correlation.  In any real measurement, however, an approximation to the actual PSD is made by sampling the 
edge position (in the case of LER) or the linewidth (in the case of LWR) of a finite-length feature.  The result 
is called the discrete PSD and it exhibits not only random errors (measuring noise is fundamentally noisy), 
but systematic biases as well.  Thus, it is important to understand the nature and magnitude of these 
systematic errors in PSD measurement and to develop methods for their mitigation.  While most studies of 
LER measurement bias have focused on the LER standard deviation,1,2 this work will address biases in the 
PSD itself. 
 
 There are several tools available to study the biases in PSD measurement.  For the special case of a 
roughness exponent of 0.5, an analytical expression for the discrete PSD has been derived by Hiraiwa and 
Nishida.3,4,5,6,7  For other cases, numerically generating synthetic rough edges that are then “measured” and 
analyzed leads to further insights into errors in PSD measurement.8,9  In this paper, the properties of the 
emasured PSD will be examined using these and other analytical tools with the goal of defining and then 
minimizing the systematic errors present in PSD measurement.   
 

2. Theory of the Discrete PSD 
 
 Given a randomly rough lithographic feature such as a long line, different points along the edge of 
that feature may be correlated.  To examine such correlations, the autocovariance function ( R~ ) of the feature 
edge position (or feature width for the case of two feature edges that are completely uncorrelated) is defined 
as 
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where w is the measured linewidth/edge position, s and t are the positions where measurements are made 
along the length of the line, w  is the mean linewidth/edge position of the feature, and ...  represents the 
average over many instances of the roughness.  If the process is stationary, the resulting autocovariance will 
be a function of only the distance s – t. 
 
 The LWR/LER PSD is generally calculated as the squared magnitude of the Fourier transform of the 
feature width/edge position.  For any real measurement, though, the feature will be sampled, typically with 
measurements made some fixed distance apart, Δy.  The discrete PSD (PSDd) will then be calculated from a 
discrete Fourier transform (such as the Fast Fourier Transform) of this data. 
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where N is the number of measurement points, L = ΔyN is the length of the line being sampled, and the 
frequency f = τ/L.  The right-hand side of equation (2) shows that calculating the PSD from the discrete 
Fourier transform of linewidth data is equivalent to the discrete Fourier transform of the (biased) estimator 
for the autocovariance function (as expected from the Wiener–Khinchin theorem). 
 
 As Hiraiwa and Nishida have shown,3 it is possible to calculate the discrete PSD analytically given a 
certain model form for the autocovariance function.  For example, it has been common to assume that a 
stretched exponential autocovariance function can apply to rough features. 
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where ξ is the correlation length and α is the roughness exponent.  For α = 0.5, the resulting continuous PSD 
can be analytically derived.10  For a one-dimensional problem (such as LER or LWR), 
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Using the stretched exponential model for autocovariance and α = 0.5, it is also possible to calculate the 
discrete PSD analytically.  The result derived by Hiraiwa and Nishida (using slightly different notation here) 
is 
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where ξδ /yΔ= , ξπfa 2=  , and δδ aieez −= .   
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 It is important to note that this result is only valid for the case of a roughness exponent α = 0.5.  
Experimental LER data often shows roughness exponents more in the range of 0.7 – 0.8.11  Unfortunately, an 
analytical solution for the discrete PSD is not possible for these cases.  Other techniques for dealing with 
these higher roughness exponents will be described in later sections. 
 

3. Properties of the Discrete PSD 
 
 In practice, equation (5) is awkward to deal with and is evaluated numerically.  Some 
simplifications, however, will make the analytical PSDd more convenient.  Taking each term separately, 
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where this expression is used for πδ ≤≤ a0  (that is, for frequencies at or below the Nyquist frequency).  
The second term in equation (5) can likewise be modified by making the reasonable assumption that L >> ξ 
(that is, the length of line being measured is much larger than the correlation length, a requirement for 
accurate PSD measurement).  In this case, 1/ <<= − ξLN ez  and 
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Thus, the discrete PSD becomes 
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Further, equation (8) can be simplified by expanding the hyperbolic functions as Taylor series for the 
reasonable case of small δ (that is, where the sampling distance is much smaller than the correlation length – 
also a requirement for accurate measurement of the PSD).  The resulting equation is quite simple: 
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Thus, discrete PSD is equal to the continuous PSD modified by two error terms, εalias and εleakage.   
 
 Sampling means the resulting PSD contains frequency information only up to the Nyquist frequency, 
f = 1/(2Δy).  Since the actual feature being measured contains frequency information higher than the Nyquist 
frequency, the power from these higher frequencies is added to frequencies at and below the Nyquist 
frequency in the sampled PSD, a phenomenon called aliasing.  This distortion can be significant, as will be 
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shown below, and is captured by the term εalias.  The aliasing term εalias is 0 at f = 0, rising to about π2/4 – 1 at 
the Nyquist frequency. 
 
 One can see that the second error term εleakage varies from a low of –ξ/L at f = 0 to a high approaching 
ξ/L at the highest frequencies, passing though zero at a frequency corresponding to the correlation length.  
The term “leakage” refers to the impact of measuring within a finite window (that is, a finite length of the 
line being measured), resulting in a localized spreading of frequency components.  As equation (9) shows, 
this leakage takes power away from the low frequency components (frequencies below 1/(2πξ)) and adds 
power to the higher frequency components of the PSDd (frequencies above 1/(2πξ)), effectively producing a 
slight blurring of the PSD.  Leakage is minimized by making the measurement length large compared to the 
correlation length. 
 
 Thus, there are two sources of difference between the continuous and discrete PSDs:  the first is due 
to the nonzero value of ξ/L (as captured in the εleakage term), and the second is due to the nonzero value of 
Δy (as captured in the εalias term).  Let us assume, for the sake of this analysis, that the true PSD behavior of a 
rough feature is given by the autocorrelation function of equation (3) with α = 0.5, so that the true PSD is the 
continuous PSD of equation (4).  Under this assumption, differences between the discrete and continuous 
PSD are the result of sampling (the non-zero Δy and finite L), an artifact of the measurement process.   
 
 The analysis above shows that leakage decreases the apparent value of the zero-frequency PSD by 
1 – ξ/L.  While leakage also affects the high frequency terms, its impact is dwarfed in this case by the effects 
of aliasing.  Aliasing has no impact on the zero frequency, but grows to a very significant level (a 
multiplicative factor of about 2.5 for this α = 0.5 case) at the Nyquist frequency.  Figure 1 shows plots 
comparing the discrete PSD [equation (5)], the continuous PSD [equation (4)], and the approximation to the 
discrete PSD [equation (9)].  For typical parameter values, the difference between the approximate discrete 
PSD and the exact discrete PSD is very small: an error of about (Δy/ξ )2/10 at low frequencies, decreasing to 
about (Δy/ξ )2/50 at high frequencies.  The alias and leakage terms can be plotted as well, as shown in Figure 
2. 
 

 
Figure 1.  Plots of the discrete PSD (symbols), the continuous PSD (dashed line), and the approximation to the discrete 
PSD found in equation (9) (solid line), using N = 128, ξ = 6.4 nm, and Δy = 2.56 nm. 
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 (a) (b) 

Figure 2.  Plots of (a) the alias, and (b) the leakage terms, εalias and εleakage, from equation (9), using N = 256, ξ = 10 nm, 
and Δy = 1 nm. 
 
 
 Equation (9) was derived for the single case of α = 0.5.  However, the form of equation (9), with its 
εalias and εleakage terms, will be applicable to any roughness exponent.  Thus, the next goal will be to find more 
general approaches for determining these two error terms for other roughness exponents. 
 

4. Calculating Aliasing Using the Kirchner Method 
 
 Kirchner12 developed a method for calculating the effects of aliasing on a measured power spectral 
density (leakage not included).  When a random signal is undersampled (meaning there is information in the 
signal at frequencies higher than the Nyquist frequency), the apparent (measured) spectral power at some 
frequency f0 will contain not only the true power of the continuous PSD but also the power at the aliased 
frequencies kfs ± f0, where fs = 1/Δy = the sampling frequency, and k is any integer.  For a real-valued signal, 
where the PSD will be symmetric about f = 0, the resulting discretely measured PSD (including only the 
effects of aliasing) will be12 
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Consider the PSD of equation (4) in the frequency range where f >> 1/(2πξ), where we expect the aliasing to 
be most significant.  Kirchner’s formula will become 
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The infinite summation converges to an analytical result: 
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Thus, this discrete PSD including aliasing (but no leakage) matches the same result found in equation (9) for 
the case where f >> 1/(2πξ).   
 
 While it is valuable to confirm using Kirchner’s method the interpretation of εalias in equation (9) as a 
term accounting for the effect of aliasing, its real value here is in its ability to numerically evaluate the 
impact of aliasing on other PSD functions.  Consider the Palasantzas extension of the PSD function of 
equation (4) to other roughness exponents:13 
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where H plays the role of the Hurst (roughness) exponent, d is the dimensionality of the problem, and 
PSD(0) is adjusted to give the desired variance.  For d = 1,  
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This definition of the roughness exponent H matches the roughness exponent α defined by equation (3) when 
H = α = 0.5, though not for other values.  Again considering the frequency range where f >> 1/(2πξ), 
Kirchner’s formula will become 
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By analogy with our previous results, we can define the aliasing term as 
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Since the summation will converge for H > 0, we can numerically evaluate εalias(f) for different values of H.  
Some results are shown in Figure 3, where carrying out the summation in equation (16) to k = 100 is 
sufficient. 
 

Proc. of SPIE Vol. 8681  86812I-6

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2014 Terms of Use: http://spiedl.org/terms



 

 

 The results of the numerical calculations of εalias(f) for 15.0 ≤≤ H  can be fit extremely well to a 
simple empirical expression.  Letting ε0.5 be the analytical aliasing term for the case of α = 0.5 [that is, 
equation (12)],  
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This empirical expression for εalias produces a PSD that matches that produced using equation (16) to better 
than 0.35% over the full range of frequency and Hurst exponents.  While the numerical evaluation of 
equation (16) is simple and fast, equation (17) may prove useful when fitting to experimental data that is 
aliased. 
 
 

 
Figure 3.  Calculations of εalias using equation (16) for two different roughness exponents.  Results for 0.5 < H < 1.0 
producing aliasing between these two curves. 
 
 

5. Using Simulation to Determine Leakage and Aliasing 
 
 The Hiraiwa and Nishida discrete PSD function of equation (5), as simplified in equation (9), 
provides analytical equations for leakage and aliasing for the case of α = 0.5.  The Kirchner method provides 
a very simple numerical scheme for calculating the effects of aliasing for any PSD.  For the Palasantzas PSD 
commonly used to model LER data, the Kirchner aliasing results are conveniently summarized in 
approximate form by equation (17) for values of roughness exponent H between 0.5 and 1.0.  The only thing 
remaining is a determination of the leakage term for roughness exponents other than 0.5. 
 
 Numerical simulation of rough features with predefined statistical properties provides a valuable 
numerical tool for determining the effects of leakage and aliasing since leakage and aliasing can be 
individually turned on and off in such simulations.  Here, the Thorsos method14,15 was used to generate 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

0 0.1 0.2 0.3 0.4 0.5 0.6

ε a
lia
s

fΔy

H = 0.5

H = 1.0

Proc. of SPIE Vol. 8681  86812I-7

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 05/06/2014 Terms of Use: http://spiedl.org/terms



 

 

random rough edges with a Gaussian distribution and correlation behavior determined by the Palasantzas 
PSD.  Letting Ls be the length of the simulated line, leakage will occur when the metrology length L < Ls.  
Letting Δs be the simulation grid size, aliasing will occur when the metrology sampling distance Δy > Δs.  
Thus, leakage in the extraction of the PSD from measurement of the simulated line can be turned off by 
setting L = Ls.  Likewise, aliasing in the simulation can be turned off by letting Δy = Δs. 
 
 As a first test, random rough lines were generated and their PSDs extracted using L = Ls and Δy = Δs.  
The PSDs of M simulations were averaged together, and the RMS relative difference between the resulting 
measured PSD and the input PSD was calculated.  Such calculations were repeated multiple times to reduce 
the statistical uncertainty in the calculated RMS differences.  As Figure 4 shows, the measured PSD from the 
simulated rough lines has a relative uncertainty of 1.0 (for the case of M = 1), as expected.  Averaging 
multiple PSDs together allows the measured PSD to converge to the input PSD as M/1 , also as expected.  
Note that this convergence trend shows that the measured PSD exhibits neither leakage nor aliasing (and thus 
systematic differences between the discrete and continuous PSDs) when L = Ls and Δy = Δs.   
 
 

 
Figure 4. Convergence of the numerically generated PSD to the input PSD as a function of the number of trials 
being averaged together (σ = 5 nm, ξ = 10 nm, α = 0.5, Δy = 1 nm, N = 1,024).  The standard M/1  convergence 
trend is shows as the solid line, with simulations shown as the symbols.  The RMS Relative Error is the RMS relative 
difference between the measured PSD and the continuous PSD used as the input to the simulations. (From Ref. 15.) 
 
 
 Leakage can be turned on for the simulations without aliasing by letting Ls = 2L and keeping Δy = 
Δs.  From the simulations, an “experimental” leakage term can be calculated from 
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Note that the impact of aliasing on the leakage is still present in the simulations even though the main 
aliasing term is absent.  Figure 5 compares the experimental leakage (as determined from the average of 400 
million simulations) to the derived expression for εleakage in equation (9) for the case of α = 0.5.  As can be 
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seen, the simulations and the derived analytical expression match extremely well until the very highest 
frequencies.  At the Nyquist frequency, the simulated εleakage is higher by about 9%, resulting in a difference 
in the simulated and predicted PSD of less than 0.9%.  The reason for this difference at high frequencies is 
unclear, but it is small enough to be of little concern.  Simulations using different sampling distances, line 
lengths, and correlation lengths produced similar results.  
 

 
Figure 5.  Plots of εleakage, from equation (9) and from simulations with aliasing turned off, using α = 0.5, N = 256, ξ = 
10 nm, and Δy = 1 nm. 
 
 
 Likewise, leakage can be turned off by setting Ls = L and aliasing can be turned on by setting Δs = 
Δy/Nsim.  Comparison to the analytical aliasing term, however, is complicated by the fact that the analytical 
result assumes a continuum, that is Nsim → ∞.  To understand the impact of the simulation grid size on the 
aliasing results, Nsim was varied from 2 to 128 and the aliasing term εalias calculated from the measured 
discrete PSD.  The results are shown in Figure 6 (10 million simulations per curve).  As Nsim increases, the 
aliasing converges to the continuum result from equation (9).  The rate of convergence is well described by 
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Thus, the worst-case difference is at the Nyquist frequency (2fΔy = 1), where the simulation approaches the 
continuum answer with a difference equal to 1/Nsim.  Based on this result, the simulations below will use Nsim 
= 128 and the calculated εalias will be corrected by adding ( ) simNyf /2 2Δ  to give the best approximation to the 
continuum value of εalias. 
 
 Comparing these simulation results for εalias to the Kirchner calculations, using a finite value of Nsim 
is equivalent to using a finite range of k in the summation in equation (16).  In fact, the simulation results 
shown in Figure 6 can be reproduced almost exactly using the Kirchner equation and letting the summation 
go to a maximum k of Nsim/2.  Physically, the use of a maximum k in the Kirchner summation or a finite Nsim 
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in the simulations is equivalent to saying there is a maximum frequency present in the physical feature being 
measured, and that the real world ceases to be a continuum at a small enough length scale. 
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Figure 6.  Plots of εalias from simulations as a function of the ratio of the metrology sampling distance to the simulation 
grid size (Nsim), using α = 0.5, N = 256, ξ = 10 nm, and Δy = 1 nm. 
 
 

 
Figure 7.  Plots of εalias, from equation (9) and from simulations with leakage turned off, using α = 0.5, N = 256, ξ = 10 
nm, and Δy = 1 nm.  The two curves are indistinguishable. 
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where g(y) is assumed symmetric about y = 0 so that G(f), the Fourier transform of g(y), will be real.  
Measuring the LER using a data window g(y) results in a measured PSD that is equal to the continuous PSD 
convolved with the square of G(f).  For the rectangular window of a conventional LER measurement, the 
continuous PSD is convolved with 
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LffG
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As L becomes large, window term of equation (21) approaches a delta function and the measured PSD 
becomes a perfect reproduction of the continuous PSD.  For finite L, the convolution of the window term 
causes a “leakage” of other frequencies into the measured PSD at f. 
 
 Note that equation (21) falls off as 1/f 2 away from the frequency being measured.  The PSD, on the 
other hand, falls off as 1/f 2H+1.  For H = 0.5, the fall-off of the window convolution term exactly matches the 
rise of the PSD toward lower frequencies, so that the amount of leakage is a constant at high frequencies.  
For H > 0.5, the PSD rises faster than the window convolution term falls off, and the leakage term gets 
bigger for higher frequencies.  Thus, leakage can be reduced for 0.5 < H < 1.0 by using a G2(f) that falls off 
faster than 1/f 3.  There are a number of data windows commonly employed in signal analysis that exhibit this 
property. 
 
 Consider the Bartlett window16 given by 
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The Bartlett window is just an isosceles triangle with base width of L and height adjusted to give the same 
area as the rectangular window.  The Fourier transform of the Bartlett window gives  
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Since this window term falls off as 1/f 4, the high frequencies of the PSD will not experience leakage.  Other 
common windows, such as the Welch and Hann windows, have the same behavior.16  Figure 9 shows 
simulations of measured PSD using the Bartlett window, extracting the leakage term as before.  Note that the 
resulting leakage is less than 2% for all frequencies, and is thus small enough to be ignored under most 
circumstances.  The small rise in leakage at the Nyquist frequency matches the difference seen between 
simulated and analytical leakage terms shown in Figure 5. 
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• Extraction of three PSD parameters (σ, ξ, and H) is essential for understand line-edge roughness.  
The systematic biases in PSD measurement make accurate measurement of the roughness exponent 
especially difficult 

 
Correcting the measured PSD for systematic biases is possible using the techniques developed above, but 
requires that η, the measurement signal FWHM, be known.  Alternatively, if the sampling distance is set to 
twice  η, the PSD parameters can be extracted in a straightforward manner by using the lower 75% of the 
frequency range.  In either case, measuring the PSD with a SEM that has an unknown value of η produces a 
PSD with unknown biases. 
 
 An important error source not discussed in this work is image noise, resulting in measurement noise 
in the edge position/linewidth w(s).  This error source is random, but causes a systematic error in the PSD.1,17  
Further work should also include a method for evaluating the uncertainty in the values of σ, ξ, and H 
extracted from a measured PSD as a function of measurement parameters. 
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