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Abstract

Measurement of the power spectral density (PSD) of a rough surface or feature involves large
random and systematic errors. While random errors can be reduced by averaging together many
PSDs, systematic errors can be reduced only by carefully studying and understanding the sources
of these systematic errors. Using both analytical expressions and numerical simulations for the
measurement of the PSD of line-edge roughness, three sources of systematic errors are evaluated:
aliasing, leakage, and averaging. Exact and approximate expressions for each of these terms are
derived over a range of roughness exponents, allowing a measured PSD to be corrected for its
systematic biases. The smallest measurement bias is obtained when appropriate data windowing
is used, and when the sampling distance is set to twice the measurement signal width.
Uncorrected PSD measurements are likely to systematically bias the extracted roughness
exponent to higher values.

Subject Terms: power spectral density, PSD, discrete PSD, aliasing, spectral leakage, line-edge
roughness, linewidth roughness, LER, LWR

1. Introduction

Line-edge roughness (LER) and linewidth roughness (LWR) in lithography are best characterized by
the power spectral density (PSD) of the roughness, or similar measures of roughness frequency and
correlation. In any real measurement, however, an approximation to the actual PSD is made by sampling the
edge position (in the case of LER) or the linewidth (in the case of LWR) of a finite-length feature. The result
is called the discrete PSD and it exhibits not only random errors (measuring noise is fundamentally noisy),
but systematic biases as well. Thus, it is important to understand the nature and magnitude of these
systematic errors in PSD measurement and to develop methods for their mitigation. While most studies of
LER measurement bias have focused on the LER standard deviation,'” this work will address biases in the
PSD itself.

There are several tools available to study the biases in PSD measurement. For the special case of a
roughness exponent of 0.5, an analytical expression for the discrete PSD has been derived by Hiraiwa and
Nishida.>*>®" For other cases, numerically generating synthetic rough edges that are then “measured” and
analyzed leads to further insights into errors in PSD measurement.®” In this paper, the properties of the
emasured PSD will be examined using these and other analytical tools with the goal of defining and then
minimizing the systematic errors present in PSD measurement.

2. Theory of the Discrete PSD

Given a randomly rough lithographic feature such as a long line, different points along the edge of

that feature may be correlated. To examine such correlations, the autocovariance function (INQ ) of the feature
edge position (or feature width for the case of two feature edges that are completely uncorrelated) is defined
as
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R(s,1) = ((w(s) = w ) w(t) - w)) (1)

where w is the measured linewidth/edge position, s and ¢ are the positions where measurements are made
along the length of the line, w is the mean linewidth/edge position of the feature, and <> represents the

average over many instances of the roughness. If the process is stationary, the resulting autocovariance will
be a function of only the distance s — ¢.

The LWR/LER PSD is generally calculated as the squared magnitude of the Fourier transform of the
feature width/edge position. For any real measurement, though, the feature will be sampled, typically with
measurements made some fixed distance apart, Ay. The discrete PSD (PSD,) will then be calculated from a
discrete Fourier transform (such as the Fast Fourier Transform) of this data.

N-1 2
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where N is the number of measurement points, L = AyN is the length of the line being sampled, and the
frequency f = 7/L. The right-hand side of equation (2) shows that calculating the PSD from the discrete
Fourier transform of linewidth data is equivalent to the discrete Fourier transform of the (biased) estimator
for the autocovariance function (as expected from the Wiener—Khinchin theorem).

As Hiraiwa and Nishida have shown,’ it is possible to calculate the discrete PSD analytically given a

certain model form for the autocovariance function. For example, it has been common to assume that a
stretched exponential autocovariance function can apply to rough features.

R(s—t)= ol el (3)

where £ is the correlation length and « is the roughness exponent. For o= 0.5, the resulting continuous PSD
can be analytically derived.'® For a one-dimensional problem (such as LER or LWR),

20%¢

PO ey

(4)

Using the stretched exponential model for autocovariance and « = 0.5, it is also possible to calculate the
discrete PSD analytically. The result derived by Hiraiwa and Nishida (using slightly different notation here)

1S
W—dz(m:({l+Re{ . }_LRe{LNjH )
20-(: ) 1—z N (I—Z)

where 5=Ay/&, a=2af¢ ,and z=e %" .
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It is important to note that this result is only valid for the case of a roughness exponent = 0.5.
Experimental LER data often shows roughness exponents more in the range of 0.7 — 0.8."" Unfortunately, an
analytical solution for the discrete PSD is not possible for these cases. Other techniques for dealing with
these higher roughness exponents will be described in later sections.

3. Properties of the Discrete PSD

In practice, equation (5) is awkward to deal with and is evaluated numerically. Some
simplifications, however, will make the analytical PSD, more convenient. Taking each term separately,

61+Re{ z } :éRe{l+Z}= J'sinh(9) ©)
2 -z 2 -z 2[cosh(5)—c0s(a5)]

where this expression is used for 0 <ad < (that is, for frequencies at or below the Nyquist frequency).

The second term in equation (5) can likewise be modified by making the reasonable assumption that L >> &
(that is, the length of line being measured is much larger than the correlation length, a requirement for

accurate PSD measurement). In this case,

zN‘:e_L/‘f <<1 and

s Re{Z_ZNZI } . { : } & cosh(5)cos(a5)—12 )
N | d-2) L (1-2)*) L 2[cosh(5)—cos(ad)]
Thus, the discrete PSD becomes
(PSD,(f)) _ & sinh(&) & & cosh(§)cos(ad)-1 g
20°E - 2[cosh(§) —cos(aﬁ)] L sinh(9) [cosh(5) —cos(aé)] ®)

Further, equation (8) can be simplified by expanding the hyperbolic functions as Taylor series for the
reasonable case of small O (that is, where the sampling distance is much smaller than the correlation length —
also a requirement for accurate measurement of the PSD). The resulting equation is quite simple:

207 .
<PSDd (f)> ~ 1+ (27Z'f§)2 (1 + € alias )(1 + gleakage) (9)
where £, :[éj (2—” ey -1 and &, = [— TfAy J -1
“ LA Q@rfe) +1 sin(7 f Ay)

Thus, discrete PSD is equal to the continuous PSD modified by two error terms, &yias and Eeakqge-

Sampling means the resulting PSD contains frequency information only up to the Nyquist frequency,
f=1/(2Ay). Since the actual feature being measured contains frequency information higher than the Nyquist
frequency, the power from these higher frequencies is added to frequencies at and below the Nyquist
frequency in the sampled PSD, a phenomenon called aliasing. This distortion can be significant, as will be
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shown below, and is captured by the term &,;,,. The aliasing term &, is 0 at f= 0, rising to about 7141 at
the Nyquist frequency.

One can see that the second error term &g Varies from a low of —¢&/L at f'= 0 to a high approaching
&L at the highest frequencies, passing though zero at a frequency corresponding to the correlation length.
The term “leakage” refers to the impact of measuring within a finite window (that is, a finite length of the
line being measured), resulting in a localized spreading of frequency components. As equation (9) shows,
this leakage takes power away from the low frequency components (frequencies below 1/(27¢£)) and adds
power to the higher frequency components of the PSD, (frequencies above 1/(27&)), effectively producing a
slight blurring of the PSD. Leakage is minimized by making the measurement length large compared to the
correlation length.

Thus, there are two sources of difference between the continuous and discrete PSDs: the first is due
to the nonzero value of &L (as captured in the earage term), and the second is due to the nonzero value of
Ay (as captured in the &, term). Let us assume, for the sake of this analysis, that the true PSD behavior of a
rough feature is given by the autocorrelation function of equation (3) with &= 0.5, so that the true PSD is the
continuous PSD of equation (4). Under this assumption, differences between the discrete and continuous
PSD are the result of sampling (the non-zero Ay and finite L), an artifact of the measurement process.

The analysis above shows that leakage decreases the apparent value of the zero-frequency PSD by
1 — &/L. While leakage also affects the high frequency terms, its impact is dwarfed in this case by the effects
of aliasing. Aliasing has no impact on the zero frequency, but grows to a very significant level (a
multiplicative factor of about 2.5 for this a = 0.5 case) at the Nyquist frequency. Figure 1 shows plots
comparing the discrete PSD [equation (5)], the continuous PSD [equation (4)], and the approximation to the
discrete PSD [equation (9)]. For typical parameter values, the difference between the approximate discrete
PSD and the exact discrete PSD is very small: an error of about (Ay/&)*/10 at low frequencies, decreasing to
about (Ay/&)*/50 at high frequencies. The alias and leakage terms can be plotted as well, as shown in Figure
2.

o Discrete PSD
- = =Continuous PSD

PSD(f)/PSD(0)

I —— Approx. Discrete PSD AN
L \\‘
0.01 ey
0.1 1 10
a = 2nfg

Figure 1. Plots of the discrete PSD (symbols), the continuous PSD (dashed line), and the approximation to the discrete
PSD found in equation (9) (solid line), using N = 128, £= 6.4 nm, and Ay = 2.56 nm.
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Figure 2. Plots of (a) the alias, and (b) the leakage terms, &ios and Eearage, from equation (9), using N = 256, &= 10 nm,
and Ay =1 nm.

Equation (9) was derived for the single case of a = 0.5. However, the form of equation (9), with its
Eatias AN Ejearage terms, will be applicable to any roughness exponent. Thus, the next goal will be to find more
general approaches for determining these two error terms for other roughness exponents.

4. Calculating Aliasing Using the Kirchner Method

Kirchner'” developed a method for calculating the effects of aliasing on a measured power spectral
density (leakage not included). When a random signal is undersampled (meaning there is information in the
signal at frequencies higher than the Nyquist frequency), the apparent (measured) spectral power at some
frequency f, will contain not only the true power of the continuous PSD but also the power at the aliased
frequencies kf; = fo, where f; = 1/Ay = the sampling frequency, and £ is any integer. For a real-valued signal,
where the PSD will be symmetric about f = 0, the resulting discretely measured PSD (including only the
effects of aliasing) will be'

(PSD,(f))=PSD(f)+ Y [PSD(kf, - f)+ PSD(Kf, + )] (10)
k=1

Consider the PSD of equation (4) in the frequency range where f>> 1/(2z&), where we expect the aliasing to
be most significant. Kirchner’s formula will become
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(PSD,(f))~ (22‘}5)[ fyzi{k o7 : 2D (11

1 k+ fAy)

The infinite summation converges to an analytical result:

P$ N €77V
Eatas = (A7) Z{k fay ) +(k+fAy)2}_Sin2(ﬂfAy) 1 "

Thus, this discrete PSD including aliasing (but no leakage) matches the same result found in equation (9) for
the case where f>> 1/(27¢).

While it is valuable to confirm using Kirchner’s method the interpretation of &,;,, in equation (9) as a
term accounting for the effect of aliasing, its real value here is in its ability to numerically evaluate the
impact of aliasing on other PSD functions. Consider the Palasantzas extension of the PSD function of
equation (4) to other roughness exponents: '

PSD(0)

L= [1 +(27 fg)ZJ”

+d /2 (13)

where H plays the role of the Hurst (roughness) exponent, d is the dimensionality of the problem, and
PSD(0) is adjusted to give the desired variance. Ford=1,

\/Zr(hu;j

PSD(0)=2072& ()

(14)

This definition of the roughness exponent H matches the roughness exponent « defined by equation (3) when
H = a = 0.5, though not for other values. Again considering the frequency range where f >> 1/(27&),
Kirchner’s formula will become

~w 2H+1 S !
<PSDd(f)>~ (Zﬁff)zml( Z{ k— fay P +(k+fAy )2H+1D (15)

k=1

By analogy with our previous results, we can define the aliasing term as

o0

2H+1 1
ga ias — + 16
1 ;|: k— fA 2H+1 (k + fAy )2H+1 :| ( )

Since the summation will converge for H > 0, we can numerically evaluate &,;,,(f) for different values of H.
Some results are shown in Figure 3, where carrying out the summation in equation (16) to k£ = 100 is
sufficient.
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The results of the numerical calculations of &,,,(f) for 0.5< H <1 can be fit extremely well to a
simple empirical expression. Letting & s be the analytical aliasing term for the case of « = 0.5 [that is,
equation (12)],

Eanas (/)= [1 - 0.421[ qu — lﬂ(go's rosssH-D -

This empirical expression for &;;,; produces a PSD that matches that produced using equation (16) to better
than 0.35% over the full range of frequency and Hurst exponents. While the numerical evaluation of
equation (16) is simple and fast, equation (17) may prove useful when fitting to experimental data that is
aliased.
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Figure 3. Calculations of &, using equation (16) for two different roughness exponents. Results for 0.5 < H < 1.0
producing aliasing between these two curves.

5. Using Simulation to Determine Leakage and Aliasing

The Hiraiwa and Nishida discrete PSD function of equation (5), as simplified in equation (9),
provides analytical equations for leakage and aliasing for the case of &= 0.5. The Kirchner method provides
a very simple numerical scheme for calculating the effects of aliasing for any PSD. For the Palasantzas PSD
commonly used to model LER data, the Kirchner aliasing results are conveniently summarized in
approximate form by equation (17) for values of roughness exponent H between 0.5 and 1.0. The only thing
remaining is a determination of the leakage term for roughness exponents other than 0.5.

Numerical simulation of rough features with predefined statistical properties provides a valuable
numerical tool for determining the effects of leakage and aliasing since leakage and aliasing can be
individually turned on and off in such simulations. Here, the Thorsos method'*'"> was used to generate
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random rough edges with a Gaussian distribution and correlation behavior determined by the Palasantzas
PSD. Letting L, be the length of the simulated line, leakage will occur when the metrology length L < L;.
Letting As be the simulation grid size, aliasing will occur when the metrology sampling distance Ay > As.
Thus, leakage in the extraction of the PSD from measurement of the simulated line can be turned off by
setting L = L,. Likewise, aliasing in the simulation can be turned off by letting Ay = As.

As a first test, random rough lines were generated and their PSDs extracted using L = L, and Ay = As.
The PSDs of M simulations were averaged together, and the RMS relative difference between the resulting
measured PSD and the input PSD was calculated. Such calculations were repeated multiple times to reduce
the statistical uncertainty in the calculated RMS differences. As Figure 4 shows, the measured PSD from the
simulated rough lines has a relative uncertainty of 1.0 (for the case of M = 1), as expected. Averaging

multiple PSDs together allows the measured PSD to converge to the input PSD as 1/+/M , also as expected.
Note that this convergence trend shows that the measured PSD exhibits neither leakage nor aliasing (and thus
systematic differences between the discrete and continuous PSDs) when L = L; and Ay = As.

0.1

RMS Relative Error, 1-D PSD

0.01 +
C ® Simulations
—1/sqrt(M)
0.001 S iy
1 100 10000 1000000
Number of Iterations Being Averaged, M
Figure 4. Convergence of the numerically generated PSD to the input PSD as a function of the number of trials

being averaged together (o= 5 nm, £= 10 nm, = 0.5, Ay = 1 nm, N = 1,024). The standard 1/~ M convergence
trend is shows as the solid line, with simulations shown as the symbols. The RMS Relative Error is the RMS relative
difference between the measured PSD and the continuous PSD used as the input to the simulations. (From Ref. 15.)

Leakage can be turned on for the simulations without aliasing by letting L; = 2L and keeping Ay =
As. From the simulations, an “experimental” leakage term can be calculated from

<PSDSimulution (f)> = PSD(f)(l + gleakage (1 + galias )) (1 8)

Note that the impact of aliasing on the leakage is still present in the simulations even though the main
aliasing term is absent. Figure 5 compares the experimental leakage (as determined from the average of 400
million simulations) to the derived expression for geaiqge in equation (9) for the case of o= 0.5. As can be
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seen, the simulations and the derived analytical expression match extremely well until the very highest
frequencies. At the Nyquist frequency, the simulated &egage 15 higher by about 9%, resulting in a difference
in the simulated and predicted PSD of less than 0.9%. The reason for this difference at high frequencies is
unclear, but it is small enough to be of little concern. Simulations using different sampling distances, line
lengths, and correlation lengths produced similar results.

0.05
0.04 £ S

0.03
0.02
0.01 - - - Equation

0.00 —— Simulation

gleakage

-0.01
-0.02
-0.03

-0.04 +

005 B
0 0.1 0.2 03 0.4 0.5

fAy

Figure 5. Plots of &egsege, from equation (9) and from simulations with aliasing turned off, using o = 0.5, N =256, &=
10 nm, and Ay = 1 nm.

Likewise, leakage can be turned off by setting L; = L and aliasing can be turned on by setting As =
Ay/Nyi. Comparison to the analytical aliasing term, however, is complicated by the fact that the analytical
result assumes a continuum, that is N, — . To understand the impact of the simulation grid size on the
aliasing results, Ny, was varied from 2 to 128 and the aliasing term &, calculated from the measured
discrete PSD. The results are shown in Figure 6 (10 million simulations per curve). As Ny, increases, the
aliasing converges to the continuum result from equation (9). The rate of convergence is well described by

& 1o (simulation ) = &

dlias (continuum)—NL@fAy)2 (19)

sim

Thus, the worst-case difference is at the Nyquist frequency (2fAy = 1), where the simulation approaches the
continuum answer with a difference equal to 1/Ny;,. Based on this result, the simulations below will use Ny,

= 128 and the calculated &,;,; will be corrected by adding (2 fAy)2 / N, to give the best approximation to the

continuum value of &;4.

Comparing these simulation results for &, to the Kirchner calculations, using a finite value of Ny,
is equivalent to using a finite range of & in the summation in equation (16). In fact, the simulation results
shown in Figure 6 can be reproduced almost exactly using the Kirchner equation and letting the summation
go to a maximum k of N,/2. Physically, the use of a maximum £ in the Kirchner summation or a finite Nj;,
in the simulations is equivalent to saying there is a maximum frequency present in the physical feature being
measured, and that the real world ceases to be a continuum at a small enough length scale.
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Figure 6. Plots of &, from simulations as a function of the ratio of the metrology sampling distance to the simulation
grid size (Ny;,), using o= 0.5, N=256, £= 10 nm, and Ay = 1 nm.
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Figure 7. Plots of &, from equation (9) and from simulations with leakage turned off, using = 0.5, N =256, £= 10
nm, and Ay = 1 nm. The two curves are indistinguishable.
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Figure 7 compares &, from equation (9) to the results of 8 million simulations. Both curves are
plotted on the same graph, but the results are indistinguishable, with differences less than 0.002. The results
shown in Figures 5 — 7 for @ = 0.5 confirm that simulations are capable of elucidating the roles of leakage
and aliasing on the resulting PSD with great accuracy. These simulations have also confirmed the accuracy
of the analytical results represented by equation (9). This same simulation approach can now be used to
determine our one unknown factor: how does the leakage term change as a function of roughness exponent?
The simulated impact of the roughness exponent H on the leakage term is shown in Figure 8. While the
impact of leakage is small for the case of H = 0.5, it is much larger for larger roughness exponents.

0.6

8Ieakage

fAy

Figure 8. Plots of &earage, from simulations, for different values of the roughness exponent / (N = 256, £= 10 nm, and
Ay =1 nm).

6. Reducing Leakage with Data Windowing

The above sections describe various tools for calculating the amount of aliasing and leakage in the
measurement of PSD. The impact of these biases on the measurement can be reduced in two ways:
numerically correcting the measured PSD for aliasing and leakage, or designing a measurement process that
has inherently small leakage and aliasing. One common way to reduce leakage is with data windowing. In
this approach, the measurement value w(s) used in equation (2) is weighted by a window g(s) before taking
the discrete Fourier transform. Standard LER measurement can be thought of as applying a rectangular
measurement window to a long feature: in the region of the line being measured g(s) = 1, outside the region
of line being measured g(s) = 0. Note that the convolution of this rectangular window with itself produces

the (1 - |m|/ N ) term in equation (2) that biases the estimator for the autocovariance.

The impact of the data window on the PSD can be seen by considering a continuous measurement of
the PSD over a finite line length.
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2

[20w(n) =Wl ay| ) =G*(f)® PSD(f) (20)

—00

<PSDmeasure (f)> -

where g(y) is assumed symmetric about y = 0 so that G(f), the Fourier transform of g(y), will be real.
Measuring the LER using a data window g(y) results in a measured PSD that is equal to the continuous PSD
convolved with the square of G(f). For the rectangular window of a conventional LER measurement, the
continuous PSD is convolved with

sin(x fL)JZ o)

G*(f) =
(f) ( 2 fL
As L becomes large, window term of equation (21) approaches a delta function and the measured PSD
becomes a perfect reproduction of the continuous PSD. For finite L, the convolution of the window term
causes a “leakage” of other frequencies into the measured PSD at f.

Note that equation (21) falls off as 1/f* away from the frequency being measured. The PSD, on the
other hand, falls off as 1/f° 2 Bor H= 0.5, the fall-off of the window convolution term exactly matches the
rise of the PSD toward lower frequencies, so that the amount of leakage is a constant at high frequencies.
For H > 0.5, the PSD rises faster than the window convolution term falls off, and the leakage term gets
bigger for higher frequencies. Thus, leakage can be reduced for 0.5 < H < 1.0 by using a G*(f) that falls off
faster than 1/f°. There are a number of data windows commonly employed in signal analysis that exhibit this

property.

Consider the Bartlett window'® given by

2-4|/L —L/2<y<L/2

22
0 ,otherwise (22)

gBartlett (y) = {

The Bartlett window is just an isosceles triangle with base width of L and height adjusted to give the same
area as the rectangular window. The Fourier transform of the Bartlett window gives

sin(z fL/2)J4 23)

sziartlett (f) = ( 7Z'fL /2

Since this window term falls off as 1/f*, the high frequencies of the PSD will not experience leakage. Other
common windows, such as the Welch and Hann windows, have the same behavior.'® Figure 9 shows
simulations of measured PSD using the Bartlett window, extracting the leakage term as before. Note that the
resulting leakage is less than 2% for all frequencies, and is thus small enough to be ignored under most
circumstances. The small rise in leakage at the Nyquist frequency matches the difference seen between
simulated and analytical leakage terms shown in Figure 5.
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Figure 9. Plots of &egkqge, from simulations using the Bartlett window, for different values of the roughness exponent A
(N=256, £=10 nm, and Ay = 1 nm).

7. The Impact of Spatial Averaging

One useful approach to reducing the effects of aliasing is through averaging. If the spacing between
measurements is Ay, the measurement can be (and usually is) the average linewidth or edge position over
some range 77. If 7= 0 then we have the measurement at a point, as was assumed above in the derivation of
the discrete PSD and in the simulations. For 7> 0 the averaging dampens the high frequency components of
the signal, and thus the aliasing. The impact of this kind of averaging has been previously derived,'* with the
PSD including averaging equal to the PSD assuming no averaging multiplied by the square of the Fourier
transform of the averaging shape function. For a simple rectangle shape (straight averaging over the distance
77), the Fourier transform is a sinc function, giving

sin(

2
PSD, . (f)=PSD, (f)[—’f”)j (24)
fn

Consider the case of H = 0.5. Since the alias term is, in fact, a sinc function, choosing 7 = Ay above gives
the product of aliasing and averaging = 1 for all frequencies. In other words, proper averaging can greatly
reduce (and theoretically even eliminate) aliasing.

When measuring LER using a scanning electron microscope (SEM), the measurement spot can be
assumed to be a Gaussian. A Gaussian-shaped beam of electrons interacts with the feature being measured
to produce a Gaussian-shaped measurement signal (wider than the incident beam) of full-width half
maximum (FWHM) width 7. The impact of this averaging can be seen in Figure 10 using simulation, and is
function of 7/Ay. For no averaging (77 = 0), aliasing makes the measured PSD higher at the high frequencies.
Averaging lowers the measured PSD at high frequencies, thus reducing the impact of aliasing. However, for
n > Ay/2 the impact of averaging is greater than aliasing, and the measured PSD is suppressed at high
frequencies.
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Figure 10. Simulations of the impact of averaging on the measured PSD. The FWHM of the Gaussian measurement
signal (77) is varied from 0 to twice the sampling distance. The continuous PSD (without aliasing, leakage or averaging)
is shown as the dotted line (N =256, £= 10 nm, H = 0.5, Ay = 2 nm, rectangular measurement window).

Consider typical SEM measurement of LER. A typical SEM incident spot size is about 2 nm. As
this spot interacts with the material being measured, scattered electrons within the material grow the
interaction volume so that the measurement signal would typically be 4 — 6 nm wide, depending on the
electron energy. If the sampling distance is set to 4 nm (a commonly recommended value), then averaging
would occur over a distance of 1 — 1.5Ay. As Figure 10 shows, the result will be a PSD with suppressed
high-frequency power and that appears to have a higher value of the roughness exponent.

It will be convenient to account for this averaging effect by adding an averaging error term &,,,,.
<PSDd (f)> = PSD(f)(l + ‘galias - gavg Xl + gleakage) (25)

Simulations can be used to determine the magnitude and frequency dependence of &,,. For example, when
H=0.5, Gaussian averaging is well approximated by

L0927

2
A 7fAy) (26)

avg

Figure 11 shows simulation results when 77 = Ay/2. A sampling distance equal to about twice the Gaussian
FWHM provides a nearly optimum amount of averaging to reduce the aliasing. As the graphs show, this
setting of sampling distance allows the averaging to counteract the aliasing quite well for the lower 75% of
the frequency range. Note also that the Kirchner method can be accommodated to calculate &jias — &ag.
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Figure 11. Plots of (a) &g, and (b) &uizs — Euve, using N = 256, £= 10 nm, Ay = 2 nm, and 77 = 1 nm for a Gaussian-
shaped measurement signal.

8. Conclusions

Systematic errors in PSD measurement are caused by several factors. Spectral leakage results from the finite
value of L/&, the ratio of the measurement length to the correlation length. Aliasing occurs when the object
being measured has power at frequencies greater than the sampling frequency. Averaging occurs whenever
the measurement spot size is an appreciable fraction of the sampling distance. All of these systematic errors
can be significant, and vary in degree and form as a function of the physical parameters of the PSD, in
particular the correlation length and the roughness exponent. A thorough understanding of these effects can
be used to minimize and/or correct for the systematic errors.

Three tools have been used to understand PSD measurement. The Hiraiwa and Nishida equation’
gives an analytical, exact expression for the measured PSD including aliasing and leakage (but not
averaging) for the case of H = 0.5. An approximate form of the Hiraiwa and Nishida equation was derived in
this paper to explicitly show the separate effects of aliasing and leakage. The Kirchner equation'? allows a
simple numerical calculation of aliasing for any value of the roughness exponent. Finally, simulation has
been used to generate and measure random rough edges and extract the various error terms. All three
methods produce essentially identical results in the areas where their domains overlap.

Through the use of these numerical and analytical tools, a thorough understanding of many of the
systematic biases in PSD measurement has been presented. Further, several mitigation strategies have been
explored to reduce error in PSD measurement. The basic lessons learned are:

* Average together as many PSDs as possible to reduce random errors (100 averaged PSDs results in
10% random error in the PSD)

* Use data windowing (using the Bartlett, Welch, or similar window) to reduce spectral leakage to
negligible levels

* The non-zero spot size of the measurement signal produces averaging that counters aliasing, and
produces an optimum balance when the sampling distance is set to about twice the spot size FWHM
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» Extraction of three PSD parameters (o, & and H) is essential for understand line-edge roughness.
The systematic biases in PSD measurement make accurate measurement of the roughness exponent
especially difficult

Correcting the measured PSD for systematic biases is possible using the techniques developed above, but
requires that 77, the measurement signal FWHM, be known. Alternatively, if the sampling distance is set to
twice 7, the PSD parameters can be extracted in a straightforward manner by using the lower 75% of the

frequency range. In either case, measuring the PSD with a SEM that has an unknown value of 7 produces a
PSD with unknown biases.

An important error source not discussed in this work is image noise, resulting in measurement noise
in the edge position/linewidth w(s). This error source is random, but causes a systematic error in the PSD.""”
Further work should also include a method for evaluating the uncertainty in the values of o, &£ and H
extracted from a measured PSD as a function of measurement parameters.
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