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Abstract. Measurement of the power spectral density (PSD) of a rough
surface or a feature involves large random and systematic errors. While
random errors can be reduced by averaging together many PSDs, system-
atic errors can be reduced only by carefully studying and understanding
the sources of these systematic biases. Using both analytical expressions
and numerical simulations for the measurement of the PSD of line-edge
roughness, four sources of systematic errors are evaluated: aliasing, leak-
age, averaging, and image noise. Exact and approximate expressions for
each of these terms are derived over a range of roughness exponents,
allowing a measured PSD to be corrected for its systematic biases. In
the absence of image noise, the smallest measurement bias is obtained
when appropriate data windowing is used and when the sampling distance
is set to twice the measurement signal width. Uncorrected PSD measure-
ments are likely to systematically bias each of the PSD parameters, with
the roughness exponent especially susceptible to bias. © 2013 Society of
Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMM.12.3.033016]
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1 Introduction
Line-edge roughness (LER) and line-width roughness
(LWR) in lithography are best characterized by the power
spectral density (PSD) of the roughness or similar measures
of roughness frequency and correlation. In any real measure-
ment, however, an approximation to the actual PSD is made
by sampling the edge position (in the case of LER) or the
line-width (in the case of LWR) of a finite-length feature.
The result is called the discrete PSD, and it exhibits not only
random errors (measuring noise is fundamentally noisy), but
also systematic biases. Thus, it is important to understand the
nature and the magnitude of these systematic errors in PSD
measurement and to develop methods for their mitigation.
While most studies of LER measurement bias have focused
on the LER standard deviation,1,2 this work will address
biases in the PSD itself.

There are several tools available to study the biases in the
PSD measurement. For the special case of a roughness expo-
nent of 0.5, an analytical expression for the discrete PSD has
been derived by Hiraiwa and Nishida.3–7 For other cases,
numerically generated synthetic rough edges, which are
then “measured” and analyzed, leads to further insights
into errors in the PSD measurement.8,9 In this article, the
properties of the measured PSD will be examined using these
and other analytical tools with the goal of defining and
then minimizing the systematic errors present in the PSD
measurement.

2 Theory of the Discrete PSD
Given a randomly rough lithographic feature, such as a long
line, different points along the edge of that feature may be

correlated. To examine such correlations, the autocovariance
function (R̃) of the feature edge position (or feature width for
the case of two feature edges that are completely uncorre-
lated) is defined as

R̃ðs; tÞ ¼ hðwðsÞ − w̄ÞðwðtÞ − w̄Þi; (1)

where w is the measured line-width/edge position, s and t are
the positions where measurements are made along the length
of the line, w̄ is the mean line-width/edge position of the fea-
ture, and h: : : i represents the average over many instances of
the roughness. If the process is stationary, the resulting auto-
covariance will be a function of only the distance s − t.

The LWR/LER PSD is generally calculated as the squared
magnitude of the Fourier transform of the feature width/edge
position. For any real measurement, though, the feature will
be sampled typically with measurements made some fixed
distance apart, Δy. The discrete PSD (PSDd) will then be
calculated from a discrete Fourier transform (such as the
fast Fourier transform) of this data.

hPSDdðfÞi ¼
Δy
N

�����
XN−1

s¼0

ðwðsÞ − w̄Þe−i2πτs∕N
����
2�

¼ Δy
N

XN−1

s¼0

XN−1

t¼0

R̃ðs; tÞei2πτðs−tÞ∕N

¼ Δy
XN−1

m¼−ðN−1Þ
ð1 − jmj

N
ÞR̃ðmÞei2πτm∕N; (2)

where N is the number of measurement points, L ¼ ΔyN is
the length of the line being sampled, and the frequency
f ¼ τ∕L. The far right side of Eq. (2) shows that calculating0091-3286/2013/$25.00 © 2013 SPIE
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the PSD from the discrete Fourier transform of line-width
data is equivalent to the discrete Fourier transform of the
(biased) estimator for the autocovariance function (as
expected from the Wiener–Khinchin theorem).

As Hiraiwa and Nishida have shown,3 it is possible to cal-
culate the discrete PSD analytically, given a certain model
form for the autocovariance function. For example, it has
been common to assume that a stretched exponential auto-
covariance function can be applied to rough features.

R̃ðs − tÞ ¼ σ2e−ðjs−tj∕ξÞ2α ; (3)

where ξ is the correlation length and α is the roughness expo-
nent. For α ¼ 0.5, the resulting continuous PSD can be ana-
lytically derived.10 For a one-dimensional problem (such as
LER or LWR),

PSDðfÞ ¼ 2σ2ξ

1þ ð2πfξÞ2 : (4)

Using the stretched exponential model for autocovariance
and α ¼ 0.5, it is also possible to calculate the discrete PSD
analytically. The result derived by Hiraiwa and Nishida
(using slightly different notation here) is

hPSDdðfÞi
2σ2ξ

¼ δ

�
1

2
þ Re

�
z

1 − z

�
−

1

N
Re

�
z − zNþ1

ð1 − zÞ2
��

;

(5)

where δ ¼ Δy∕ξ, a ¼ 2πfξ, and z ¼ e−δeiaδ.
It is important to note that this result is only valid for the

case of a roughness exponent α ¼ 0.5. Experimental LER
data often shows roughness exponents in the range of 0.7
to 0.8.11 Unfortunately, an analytical solution for the discrete
PSD is not possible for these cases. Other techniques for
dealing with these higher roughness exponents will be
described in later sections.

3 Properties of the Discrete PSD
In practice, Eq. (5) is awkward to deal with and is evaluated
numerically. Some simplifications, however, will make
the analytical PSDd more convenient. Taking each term sep-
arately

δ

�
1

2
þ Re

�
z

1 − z

��
¼ δ

2
Re

�
1þ z
1 − z

�

¼ δ sinhðδÞ
2½coshðδÞ − cosðaδÞ� ; (6)

where this expression is used for 0 ≤ aδ ≤ π (i.e., for
frequencies at or below the Nyquist frequency). The second
term in Eq. (5) can likewise be modified by making the rea-
sonable assumption that L ≫ ξ (i.e., the length of line being
measured is much larger than the correlation length, a
requirement for the accurate PSD measurement). In this
case, jzN j ¼ e−L∕ξ ≪ 1 and

δ

N
Re

�
z − zNþ1

ð1 − zÞ2
�
≈

ξ

L
δ2Re

�
z

ð1 − zÞ2
�

¼ ξ

L
δ2

coshðδÞ cosðaδÞ − 1

2½coshðδÞ − cosðaδÞ�2 . (7)

Thus, the discrete PSD becomes

hPSDdðfÞi
2σ2ξ

≈
δ sinhðδÞ

2½coshðδÞ − cosðaδÞ�

×
�
1 −

ξ

L
δ

sinhðδÞ
coshðδÞ cosðaδÞ − 1

½coshðδÞ − cosðaδÞ�
�
: (8)

Further, Eq. (8) can be simplified by expanding the hyper-
bolic functions as Taylor series for the reasonable case of
small δ (i.e., where the sampling distance is much smaller
than the correlation length, also a requirement for the accu-
rate measurement of the PSD). The resulting equation is
quite simple.

hPSDdðfÞi ¼ PSDcðfÞð1þ εaliasÞð1þ εleakageÞ; (9)

where

PSDcðfÞ ¼
2σ2ξ

1þ ð2πfξÞ2

εleakage ¼
�
ξ

L

��ð2πfξÞ2 − 1

ð2πfξÞ2 þ 1

�
þO

�
ξ

L
e−L∕ξ

�
; and

εalias ≈
�

πfΔy
sinðπfΔyÞ

�
2

− 1:

Thus, the discrete PSD is equal to the continuous PSD modi-
fied by two error terms, εalias and εleakage.

Sampling means the resulting PSD contains frequency
information only up to the Nyquist frequency, f ¼
1∕ð2ΔyÞ. Since the actual feature being measured contains
frequency information higher than the Nyquist frequency, the
power from these higher frequencies is added to frequencies
at and below the Nyquist frequency in the sampled PSD, a
phenomenon called “aliasing.” This distortion can be signifi-
cant, as will be shown below, and is captured by the term
εalias. The aliasing term εalias is 0 at f ¼ 0, rising to about
π2∕4 − 1 at the Nyquist frequency.

One can see that the second error term εleakage varies from
a low of −ξ∕L at f ¼ 0 to a high approaching ξ∕L at the
highest frequencies, passing through zero at a frequency cor-
responding to the correlation length. The term “leakage”
refers to the impact of measuring within a finite window
(i.e., a finite length of the line being measured), resulting in
a localized spreading of frequency components. As Eq. (9)
shows, this leakage takes power away from the low-fre-
quency components [frequencies below 1∕ð2πξÞ] and adds
power to the higher-frequency components of the PSDd

[frequencies above 1∕ð2πξÞ], effectively producing a slight
blurring of the PSD. Leakage is minimized by making the
measurement length large compared with the correlation
length.

Thus, there are two sources of difference between the con-
tinuous and the discrete PSDs: the first is due to the nonzero
value of ξ∕L (as captured in the εleakage term) and the second
is due to the nonzero value of Δy (as captured in the εalias
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term). Let us assume, for the sake of this analysis, that the
true PSD behavior of a rough feature is given by the
autocorrelation function of Eq. (3) with α ¼ 0.5, so that
the true PSD is the continuous PSD of Eq. (4). Under this
assumption, differences between the discrete and the con-
tinuous PSD are the result of sampling (the nonzero Δy
and finite L), an artifact of the measurement process.

The analysis above shows that leakage decreases the ap-
parent value of the zero-frequency PSD by 1 − ξ∕L. While
leakage also affects the high-frequency terms, its impact is
dwarfed in this case by the effects of aliasing. Aliasing has
no impact on the zero frequency, but grows to a very signifi-
cant level (a multiplicative factor of about 2.5 for the α ¼ 0.5
case) at the Nyquist frequency. Figure 1 shows plots compar-
ing the discrete PSD [Eq. (5)], the continuous PSD [Eq. (4)],
and the approximation to the discrete PSD [Eq. (9)]. For typ-
ical parameter values, the difference between the approxi-
mate discrete PSD and the exact discrete PSD is very small:
an error of about ðΔy∕ξÞ2∕10 at low frequencies decreasing
to about ðΔy∕ξÞ2∕50 at high frequencies. The alias and leak-
age terms can be plotted individually as well, as shown
in Fig. 2.

Equation (9) was derived for the single case of α ¼ 0.5.
However, the form of Eq. (9), with its εalias and εleakage terms,
will be applicable to any roughness exponent. Thus, the next
goal will be to find more general approaches for determining
these two error terms for other roughness exponents.

4 Calculating Aliasing Using the Kirchner Method
Kirchner12 developed a method for calculating the effects of
aliasing on a measured PSD (leakage not included). When a
random signal is undersampled (meaning there is informa-
tion in the signal at frequencies higher than the Nyquist fre-
quency), the apparent (measured) spectral power at some
frequency f0 will contain not only the true power of the con-
tinuous PSD, but also the power at the aliased frequencies
kfs � f0, where fs ¼ 1∕Δy is the sampling frequency
and k is any positive integer. For a real-valued signal,
where the PSD will be symmetric about f ¼ 0, the resulting
discretely measured PSD (including only the effects of alias-
ing) will be12

hPSDdðfÞi ¼ PSDðfÞ þ
X∞
k¼1

½PSDðkfs − fÞ

þ PSDðkfs þ fÞ�: (10)

Consider the PSD of Eq. (4) in the frequency range where
f ≫ 1∕ð2πξÞ, where we expect the aliasing to be the most
significant. Kirchner’s formula will then become

hPSDdðfÞi ≈
2σ2ξ

ð2πfξÞ2

×
�
1þ ðfΔyÞ2

X∞
k¼1

½ 1

ðk − fΔyÞ2 þ
1

ðkþ fΔyÞ2�
�
:

(11)

The infinite summation converges to an analytical result,
giving

εalias ¼ ðfΔyÞ2
X∞
k¼1

�
1

ðk − fΔyÞ2 þ
1

ðkþ fΔyÞ2
	

¼ ðπfΔyÞ2
sin2ðπfΔyÞ − 1: (12)

Fig. 1 Plots of the discrete power spectral density (PSD) (symbols),
the continuous PSD (dashed line), and the approximation to the dis-
crete PSD (solid line) found in Eq. (9) usingN ¼ 128, ξ ¼ 6.4 nm, and
Δy ¼ 2.56 nm.

Fig. 2 Plots of (a) the alias and (b) the leakage terms, εalias and
εleakage, from Eq. (9) using N ¼ 256, ξ ¼ 10 nm, and Δy ¼ 1 nm.
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Thus, this discrete PSD including aliasing (but no leakage)
matches the same result found in Eq. (9) for the case
where f ≫ 1∕ð2πξÞ.

While it is valuable to confirm using Kirchner’s method
the interpretation of εalias in Eq. (9) as a term accounting for
the effect of aliasing, its real value here is in its ability to
numerically evaluate the impact of aliasing on the other
PSD functions. Consider the Palasantzas extension of the
PSD function of Eq. (4) to other roughness exponents:13

PSDðfÞ ¼ PSDð0Þ
½1þ ð2πfξÞ2�Hþd∕2 ; (13)

where H plays the role of the Hurst (roughness) exponent, d
is the dimensionality of the problem, and PSDð0Þ is adjusted
to give the desired variance. For d ¼ 1,

PSDð0Þ ¼ 2σ2ξ

� ffiffiffi
π

p
Γ
�
H þ 1

2

�
ΓðHÞ

�
: (14)

This definition of the roughness exponent H matches
the roughness exponent α defined by Eq. (3), when
H ¼ α ¼ 0.5, though not for other values. Again considering
the frequency range where f ≫ 1∕ð2πξÞ, Kirchner’s formula
will become

hPSDdðfÞi≈
PSDð0Þ

ð2πfξÞ2Hþ1

×
�
1þðfΔyÞ2Hþ1

X∞
k¼1

�
1

ðk−fΔyÞ2Hþ1
þ 1

ðkþfΔyÞ2Hþ1

	�
:

(15)

By analogy with our previous results, we can define the
aliasing term as

εalias ¼ ðfΔyÞ2Hþ1
X∞
k¼1

�
1

ðk − fΔyÞ2Hþ1
þ 1

ðkþ fΔyÞ2Hþ1

	
:

(16)

Since the summation will converge for H > 0, we can
numerically evaluate εaliasðfÞ for different values of H.
Some results are shown in Fig. 3, where carrying out the
summation in Eq. (16) to k ¼ 100 is sufficient.

The results of the numerical calculations of εaliasðfÞ for
0.5 ≤ H ≤ 1 can be fit extremely well to a simple empirical
expression. Let ε0.5 be the analytical aliasing term for the
case of α ¼ 0.5 [i.e., Eq. (12)],

εaliasðfÞ ≈
�
1 − 0.421

�
2H − 1

H

�	
ðε0.5Þ1þ0.686ð2H−1Þ: (17)

This empirical expression for εalias produces a PSD that
matches the one produced using Eq. (16) to better than
0.35% over the full range of frequency and Hurst exponents.
While the numerical evaluation of Eq. (16) is simple and fast,
Eq. (17) may prove useful when fitting to experimental data
that is aliased.

5 Using Simulation to Determine Leakage and
Aliasing

The Hiraiwa and Nishida discrete PSD function of Eq. (5), as
simplified in Eq. (9), provides analytical equations for leak-
age and aliasing for the case of α ¼ 0.5. The Kirchner
method provides a very simple numerical scheme for calcu-
lating the effects of aliasing for any PSD. For the Palasantzas
PSD commonly used to model LER data, the Kirchner alias-
ing results are conveniently summarized in approximate
form by Eq. (17) for values of roughness exponent H
between 0.5 and 1.0. The only thing remaining is a determi-
nation of the leakage term for the roughness exponents other
than 0.5.

Numerical simulation of rough features with predefined
statistical properties provides a valuable numerical tool for
determining the effects of leakage and aliasing, since leakage
and aliasing can be individually turned on and off in such
simulations. Here, the Thorsos method14,15 was used to gen-
erate random rough edges with a Gaussian distribution and
correlation behavior determined by the Palasantzas PSD.
Letting Ls be the length of the simulated line, leakage
will occur when the metrology length L is less than Ls.
Letting Δs be the simulation grid size, aliasing will occur
when the metrology sampling distance Δy is greater than
Δs. Thus, leakage in the extraction of the PSD from meas-
urement of the simulated line can be turned off by setting
L ¼ Ls. Likewise, aliasing in the simulation can be turned
off by letting Δy ¼ Δs.

As a first test, random rough lines were generated and
their PSDs were extracted using L ¼ Ls and Δy ¼ Δs.
The PSDs of M simulations were averaged together, and
the RMS relative difference between the resulting measured
PSD and the input PSD was calculated. Such calculations
were repeated multiple times to reduce the statistical uncer-
tainty in the calculated RMS differences. As shown in Fig. 4,
the measured PSD from the simulated rough lines has a rel-
ative uncertainty of 1.0 (for the case of M ¼ 1), as expected.
Averaging multiple PSDs together allows the measured PSD
to converge to the input PSD as 1∕

ffiffiffiffiffi
M

p
, also as expected.

Note that this convergence trend shows that the measured
PSD exhibits neither leakage nor aliasing (and thus, system-
atic differences between the discrete and the continuous

Fig. 3 Calculations of εalias using Eq. (16) for two different roughness
exponents. Results for 0.5 < H < 1.0 produce aliasing between these
two curves.

J. Micro/Nanolith. MEMS MOEMS 033016-4 Jul–Sep 2013 • Vol. 12(3)

Mack: Systematic errors in the measurement of power spectral density



PSDs) when L ¼ Ls and Δy ¼ Δs. It is important to note
that the RMS relative error in the PSD shown here has noth-
ing to do with noise in the measurement of the line-edge
position, but rather is a consequence of the randomness of
the line samples being measured. As the sample size
increases (more PSDs are averaged together), the result con-
verges to the expected value.

Leakage can be turned on for the simulations without ali-
asing by letting Ls ¼ 2L and keeping Δy ¼ Δs. From the
simulations, an “experimental” leakage term can be calcu-
lated from

hPSDsimulationðfÞi ¼ PSDðfÞ½1þ εleakageð1þ εaliasÞ�: (18)

Note that the impact of aliasing on the leakage is still
present in the simulations even though the main aliasing
term is absent. Figure 5 compares the experimental leakage
(as determined from the average of 400 million simulations)
with the derived expression for εleakage in Eq. (9) for the case
of α ¼ 0.5. As can be seen, the simulations and the derived
analytical expression match extremely well until the very
highest frequencies. At the Nyquist frequency, the simulated
εleakage is higher by about 9%, resulting in a difference in the
simulated and the predicted PSD of <0.9%. The reason for
this difference at high frequencies is unclear, but it is small
enough to be of little concern. Simulations using different
sampling distances, line lengths, and correlation lengths pro-
duced similar results.

Likewise, leakage can be turned off by setting Ls ¼ L,
and aliasing can be turned on by setting Δs ¼ Δy∕Nsim.
Comparison with the analytical aliasing term is, however,
complicated by the fact that the analytical result assumes
a continuum, i.e., Nsim → ∞. To understand the impact of
the simulation grid size on the aliasing results, Nsim was var-
ied from 2 to 128, and the aliasing term εalias was calculated
from the measured discrete PSD. The results are shown in
Fig. 6 (10 million simulations per curve). As Nsim increases,
the aliasing converges to the continuum result from Eq. (9).
The rate of convergence is well described by

εaliasðsimulationÞ ¼ εaliasðcontinuumÞ − 1

Nsim

ð2fΔyÞ2:
(19)

Thus, the worst-case difference is at the Nyquist fre-
quency (2fΔy ¼ 1), where the simulation approaches the
continuum answer with a difference equal to 1∕Nsim. Based
on this result, the simulations below will use Nsim ¼ 128,
and the calculated εalias will be corrected by adding
ð2fΔyÞ2∕Nsim to give the best approximation to the con-
tinuum value of εalias.

Comparing these simulation results for εalias with the
Kirchner calculations, using a finite value of Nsim is equiv-
alent to using a finite range of k in the summation in Eq. (16).
In fact, the simulation results shown in Fig. 6 can be repro-
duced almost exactly using the Kirchner equation and letting
the summation go to a maximum k of Nsim∕2. Physically, the
use of a maximum k in the Kirchner summation or a finite

Fig. 4 Convergence of the numerically generated PSD (without leak-
age of aliasing) to the input PSD as a function of the number of trials
being averaged together (σ ¼ 5 nm, ξ ¼ 10 nm, α ¼ 0.5, Δy ¼ 1 nm,
N ¼ 1024). The standard 1∕

ffiffiffiffiffi
M

p
convergence trend is shown as the

solid line with simulations shown as the symbols. The RMS relative
error is the RMS relative difference between the measured PSD and
the continuous PSD used as the input to the simulations (from
Ref. 15).

Fig. 5 Plots of εleakage from Eq. (9) (dashed line) and from simulations
(solid line) with aliasing turned off using α ¼ 0.5, N ¼ 256, ξ ¼ 10 nm,
and Δy ¼ 1 nm.

Fig. 6 Plots of εalias from simulations as a function of the ratio of the
metrology sampling distance to the simulation grid size (Nsim) using
α ¼ 0.5, N ¼ 256, ξ ¼ 10 nm, and Δy ¼ 1 nm.
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Nsim in the simulations is equivalent to saying there is a
maximum frequency present in the physical feature being
measured, and that the real world ceases to be a continuum
at a small enough length scale.

Figure 7 compares εalias from Eq. (9) with the results of
eight million simulations. Both curves are plotted on the
same graph, but the results are indistinguishable, with
differences <0.002. The results shown in Figs. 5–7 for α ¼
0.5 confirm that simulations are capable of elucidating the
roles of leakage and aliasing on the resulting PSD with great
accuracy. These simulations have also confirmed the accu-
racy of the analytical results represented in Eq. (9). This
same simulation approach can now be used to determine
our one unknown factor: how does the leakage term change
as a function of roughness exponent? The simulated impact
of the roughness exponentH on the leakage term is shown in
Fig. 8. While the impact of leakage is small for the case of
H ¼ 0.5, it is much larger for larger roughness exponents.

6 Reducing Leakage with Data Windowing
The above sections described various tools for calculating
the amount of aliasing and leakage in the measurement of
PSD. The impact of these biases on the measurement can
be reduced in twoways: numerically correcting the measured
PSD for aliasing and leakage or designing a measurement
process that has inherently small leakage and aliasing. One
common way to reduce leakage is by using data windowing.
In this approach, the measurement value wðsÞ used in Eq. (2)
is weighted by a window gðsÞ before taking the discrete
Fourier transform. Standard LER measurement can be
thought of as applying a rectangular measurement window
to a long feature: in the region of the line being measured
gðsÞ ¼ 1 and outside the region of line being measured
gðsÞ ¼ 0. Note that the convolution of this rectangular win-
dow with itself produces the ð1 − jmj∕NÞ term in Eq. (2) that
biases the estimator for the autocovariance.

The impact of the data window on the PSD can be seen by
considering a continuous measurement of the PSD over a
finite line length:

hPSDmeasureðfÞi ¼
�����

Z
∞

−∞
gðyÞðwðyÞ − w̄Þe−i2πfydy

����
2
�

¼ G2ðfÞ ⊗ PSDðfÞ; (20)

where gðyÞ is assumed to be symmetric about y ¼ 0, so that
GðfÞ, the Fourier transform of gðyÞ, will be real. Measuring
the LER using a data window gðyÞ results in a measured PSD
that is equal to the continuous PSD convolved with the
square of GðfÞ. For the rectangular window of a conven-
tional LER measurement, the continuous PSD is convolved
with

G2ðfÞ ¼
�
sinðπfLÞ
πfL

�
2

: (21)

As L becomes large, window term of Eq. (21) approaches
a delta function, and the measured PSD becomes a perfect
reproduction of the continuous PSD. For finite L, the con-
volution of the window term causes a “leakage” of other
frequencies into the measured PSD at f.

Note that Eq. (21) falls off as 1∕f2 away from the fre-
quency being measured. The PSD, on the other hand, falls
off as 1∕f2Hþ1 at high frequencies. For H ¼ 0.5, the fall-off
of the window convolution term exactly matches the rise of
the PSD toward lower frequencies, so that the amount of
leakage is a constant at high frequencies. For H > 0.5,
the PSD rises faster than the fall-off of the window convo-
lution term, and the leakage term gets bigger for higher
frequencies. Thus, leakage can be reduced for 0.5 <
H < 1.0 by using a G2ðfÞ that falls off faster than 1∕f3.
There are a number of data windows commonly employed
in signal analysis that exhibit this property.

Consider the Bartlett window16 given by

gBartlettðyÞ ¼
�
2 − 4jyj∕L; −L∕2 < y < L∕2

0; otherwise
: (22)

The Bartlett window is just an isosceles triangle with base
width of L and height adjusted to give the same area as the
rectangular window. The Fourier transform of the Bartlett
window gives

G2
BartlettðfÞ ¼

�
sinðπfL∕2Þ
πfL∕2

�
4

: (23)

Since this window term falls off as 1∕f4, the high
frequencies of the PSD will not experience significant leak-
age. Other common windows, such as the Welch and Hann
windows, have the same behavior.16 Figure 9 shows simula-
tions of the measured PSD using the Bartlett window,
extracting the leakage term as before. Note that the resulting
leakage is <2% for all frequencies, and is thus small enough
to be ignored under most circumstances. The small rise in
leakage at the Nyquist frequency matches the difference
seen between simulated and analytical leakage terms
shown in Fig. 5.

Leakage can also be estimated by considering Eq. (2) in
the continuum limit of Δy ¼ 0. The PSD with leakage (but
no aliasing) becomes

Fig. 7 Plots of εalias from Eq. (9) and from simulations with leakage
turned off using α ¼ 0.5, N ¼ 256, ξ ¼ 10 nm, and Δy ¼ 1 nm. The
two curves are indistinguishable.
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hPSDmeasureðfÞi ¼
Z

∞

−∞
½gðyÞ ⊗ gðyÞ�R̃ðyÞe−i2πfydy

¼ 2

Z
L

0

½gðyÞ ⊗ gðyÞ�R̃ðyÞ cosð2πfyÞdy:
(24)

For the case of a rectangular data window,

gðyÞ ⊗ gðyÞ ¼
�
1 − jyj∕L; −L < y < L

0; otherwise
: (25)

When α ¼ 0.5, plugging Eq. (25) into Eq. (24) produces
Eq. (9) without the aliasing term. For the Bartlett and the
other “higher order” data windows, the convolution of the
window with itself produces a y2 term rather than the linear
term of Eq. (25). For α ¼ 0.5, this produces

εleakage ¼ 12

�
ξ

L

�
2
�

3ð2πfξÞ2 − 1

½ð2πfξÞ2 þ 1�2
�
: (26)

Equation (26) matches the simulation results quite well.
For other values of the roughness exponent H, the results
of Fig. 9 can be approximated by increasing the leakage
magnitude:

εleakage ≈ 24H

�
ξ

L

�
2
�

3ð2πfξÞ2 − 1

½ð2πfξÞ2 þ 1�2
�
: (27)

7 Impact of Spatial Averaging
One useful approach for reducing the effects of aliasing is
through averaging. If the spacing between measurements
is Δy, the measurement can be (and usually is) the average
line-width or -edge position over some range η. If η ¼ 0, we
have the measurement at a point, as was assumed above in
the derivation of the discrete PSD and in the simulations. For
η > 0, the averaging dampens the high-frequency compo-
nents of the signal, and thus, the aliasing. The impact of
this kind of averaging has been previously derived12 with

the PSD including averaging equal to the PSD assuming
no averaging multiplied by the square of the Fourier trans-
form of the averaging shape function. For a simple rectan-
gular shape (straight averaging over the distance η), the
Fourier transform is a sinc function giving

PSDd−avgðfÞ ¼ PSDdðfÞ
�
sinðπfηÞ
πfη

�
2

: (28)

Consider the case of H ¼ 0.5. Since the alias term is, in
fact, a sinc function, choosing η ¼ Δy above gives the prod-
uct of aliasing and averaging ¼ 1 for all frequencies. In other
words, proper averaging can greatly reduce (and theoreti-
cally even eliminate) aliasing.

When measuring LER using a scanning electron micro-
scope (SEM), the measurement spot can be assumed to be
a Gaussian. A Gaussian-shaped beam of electrons interacts
with the feature being measured to produce a Gaussian-
shaped measurement signal (wider than the incident beam)
of full-width-half-maximum (FWHM) η. The impact of this
averaging can be seen in Fig. 10 using simulation and is a
function of η∕Δy. For no averaging (η ¼ 0), aliasing makes
the measured PSD higher at the high frequencies. Averaging
lowers the measured PSD at high frequencies, thus reducing
the impact of aliasing. However, for η > Δy∕2, the impact of
averaging is greater than aliasing, and the measured PSD is
suppressed at high frequencies.

Consider typical SEM measurement of LER. A typical
SEM incident spot size is about 2 nm. As this spot interacts
with the material being measured, scattered electrons within
the material grow the interaction volume, so that the meas-
urement signal would typically be 4 to 6 nm wide depending
on the electron energy and materials involved. If the sam-
pling distance is set to 4 nm (a commonly recommended
value), then averaging would occur over a distance of 1 to
1.5 Δy. As shown in Fig. 10, the result will be a PSD with
suppressed high-frequency power and will appear to have
a higher value of the roughness exponent. Note that the

Fig. 8 Plots of εleakage from simulations for different values of the
roughness exponent H (N ¼ 256, ξ ¼ 10 nm, and Δy ¼ 1 nm).

Fig. 9 Plots of εleakage from simulations using the Bartlett window for
different values of the roughness exponent H (N ¼ 256, ξ ¼ 10 nm,
and Δy ¼ 1 nm).
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measurement by atomic force microscopy will also produce
averaging with η about equal to the probe diameter.

The Kirchner method can be accommodated to calculate
the effects of averaging. As was shown in Eq. (28), the PSD
including both aliasing and averaging is equal to the PSD
with aliasing multiplied by the square of the Fourier trans-
form of the measurement signal shape. For the case of a
Gaussian signal of FWHM η,

PSDd−avgðfÞ ¼ PSDdðfÞe−ð2πσmfÞ2

¼ PSDdðfÞ exp
�
−
ðπηfÞ2
2 lnð2Þ

�
; (29)

where σm is the standard deviation of the Gaussian measure-
ment signal. This expression was derived based on the use of
the continuum Fourier transfer and ignoring leakage and pro-
duces a result that matches simulation when η ≫ Δy and
ξ ≪ L.

Averaging can also be accounted for by including its
effects into the autocovariance function. Taking the inverse
Fourier transform of Eq. (29) produces the “averaged” auto-
covariance function:

R̃avgðxÞ ¼ R̃ðxÞ ⊗
�

1

2
ffiffiffi
π

p
σm

e−x
2∕4σm2

�
: (30)

For the case of α ¼ 0.5, this gives

R̃avgðxÞ ¼
σ2

2
eðσm∕ξÞ2

�
e−x∕ξerfc

�
σm
ξ

−
x

2σm

�

þ ex∕ξerfc

�
σm
ξ

þ x
2σm

�	
: (31)

The averaged autocorrelation function is plotted in
Fig. 11.

For the important case where one cannot assume the
Gaussian averaging width to be much greater than the sam-
pling grid size, numerical simulations can be used to under-
stand the impact of averaging. As shown in Fig. 10 (for the
case of H ¼ 0.5), a Gaussian FHWM of about Δy∕2 produ-
ces an averaging effect that cancels the aliasing over most of
the frequency range. Further simulations for other roughness
exponents confirmed this simple rule of thumb. Figure 12
shows the relative difference between the discrete PSD,
including aliasing, leakage, and averaging, and the continu-
ous PSD for H ¼ 0.5 and 0.9. With averaging near its opti-
mum (η ¼ Δy∕2), the discrete PSD differs from the
continuous PSD by <5% out to 75% of the Nyquist fre-
quency. When using the Welch data window rather than a
rectangular window, setting η ¼ Δy∕2 produces a discrete
PSD that differs from the continuous PSD by <11% out
to 90% of the Nyquist frequency for H between 0.5 and 0.9.

8 Impact of SEM Image Noise
Statistical noise in the grayscale image produced by the SEM
has been shown to cause a positive bias in the LER σ.1,17 The
image noise, a random variation in the pixel grayscale values
within the image caused by electron shot noise and other
sources of variation, results in measurement noise in the
edge position/line-width wðsÞ and is generally thought to
be white noise, at least over the frequency range typical
of PSD measurement. Thus, a standard model for SEM
image noise is17

PSDw∕noiseðfÞ ¼ PSDw∕o noiseðfÞ þ σ2noiseΔy; (32)

where σnoise is the SEM image noise contribution, the stan-
dard deviation of the edge position/line-width wðsÞ caused
by pixel grayscale variations. Integrating this expression
over all frequencies, up to the Nyquist frequency, produces
the well-known biased LER result:1

σ2w∕noise ¼ σ2w∕o noise þ σ2noise: (33)

SEM measurement noise can be added to the simulations
by adding an uncorrelated normally distributed random noise

Fig. 10 Simulations of the impact of averaging on the measured PSD
(N ¼ 256, ξ ¼ 10 nm, H ¼ 0.5, and Δy ¼ 2 nm, and rectangular
measurement window). The full-width-half-maximum (FWHM) of
the Gaussian measurement signal (η) is varied from 0 to twice the
sampling distance. The continuous PSD (without aliasing, leakage,
or averaging) is shown as the dotted line.

Fig. 11 Plots of the standard exponential autocorrelation function
(solid line) and the Gaussian-averaged autocorrelation function
(dashed line) for α ¼ 0.5 and σm ¼ 0.3ξ.
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value to each simulated line-width/edge position. Figure 13
shows the impact of increasing SEM noise on the resulting
PSD. As can be seen, this white noise has little impact on the
low-frequency PSD values, but can dramatically increase the
high-frequency PSD. Subtracting each of the PSDs in Fig. 13
from the no-noise PSD produces a constant value that fol-
lows Eq. (32) almost exactly.

Considering σnoise as the fourth parameter in the PSD
model, its value can be estimated in the same way as σ,
ξ, and H. Several methods for producing a bias-free meas-
urement of LER (i.e., to eliminate the impact of σnoise) have
been proposed,1,18–20 but less work has been done to assess
the impact of these approaches on the measurement of PSD
and to extract the roughness exponent and correlation

length.21,22 Note that pixel averaging along the length of
the line, sometimes used to combat SEM image noise,
will reduce high-frequency LER, as discussed in the previous
section, and could possibly counter the increase in the high-
frequency PSD exhibited in Fig. 13.

9 Conclusions
Systematic errors in PSD measurement are caused by several
factors. Spectral leakage results from the finite value of
L∕ξ, the ratio of the measurement length to the correlation
length. Aliasing occurs when the object being measured has
power at frequencies greater than the sampling frequency.
Averaging occurs whenever the measurement spot size is
an appreciable fraction of the sampling distance. SEM
image noise increases the PSD for all frequencies. All of
these systematic errors can be significant and vary in degree
and form as a function of the physical parameters of the PSD,
in particular the correlation length and the roughness expo-
nent. Note that each of these biases in PSD measurement is
an artifact of the measurement process, and thus hides the
true roughness behavior of the feature being measured. A
thorough understanding of these effects can be used to min-
imize and/or correct the systematic errors, resulting in a mea-
sured PSD much closer to the actual PSD.

Several tools have been used to understand PSD
measurement. The Hiraiwa and Nishida equation 3 gives
an analytical, exact expression for the measured PSD, includ-
ing aliasing and leakage (but not averaging), for the case of
H ¼ 0.5. An approximate form of the Hiraiwa and Nishida
equation was derived in this article to explicitly show the
separate effects of aliasing and leakage. The Kirchner equa-
tion12 allows a simple numerical calculation of aliasing for
any value of the roughness exponent. This equation can be
extended to include the impact of averaging under limited
conditions. Finally, simulation has been used to generate
and measure random rough edges and to extract the various
error terms. All three methods produce essentially identical
results in the areas where their domains overlap.

Through the use of these numerical and analytical tools, a
thorough understanding of many of the systematic biases in
PSD measurement has been presented. Further, several mit-
igation strategies have been explored to reduce the error in
the PSD measurement. The basic lessons learned are:

• Average together as many PSDs as possible to reduce
random errors (100 averaged PSDs results in 10% ran-
dom error in the PSD).

• Leakage scales as ξ∕L and aliasing scales as
Δy ¼ L∕N, so that a large N (the number of measure-
ment points) is beneficial for both low leakage and low
aliasing at the important mid frequencies (which is
equivalent to requiring that Δy ≪ ξ ≪ L).

• Use data windowing (using the Bartlett, Welch, or sim-
ilar window) to reduce spectral leakage to negligible
levels.

• Balance aliasing with averaging by optimizing the
sampling distance with respect to the spot size of the
measurement signal. In the absence of SEM image
noise, an optimum balance occurs when the sampling
distance is set to about twice the spot size FWHM.

• Reduce SEM measurement noise as much as possible
or eliminate it using a bias-free measurement scheme.

Fig. 12 The relative difference between the averaged PSD (including
aliasing and leakage) and the continuous PSD (assumed to be the
true value) when η ¼ Δy∕2 (N ¼ 256, ξ ¼ 10 nm, Δy ¼ 2 nm,
H ¼ 0.5 and 0.9, and rectangular measurement window). Each
curve is the average of more than 1 million simulations.

Fig. 13 Simulated impact of scanning electron microscope (SEM)
measurement noise on the extracted PSD (N ¼ 256, ξ ¼ 10 nm,
Δy ¼ 2 nm, H ¼ 0.5, η ¼ 1 nm, and Welch measurement window).
Each curve is the average of at least 10 million simulations.
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If this is not practical, extract the measurement noise
from the measured PSD itself.

• Extract and report all three PSD parameters (σ, ξ,
and H) as all three numbers are essential for under-
standing LER. The systematic biases in PSD measure-
ment make accurate measurement of the roughness
exponent especially difficult, and care should be taken
in extracting and reporting this number.

The use of these strategies can result in a measured PSD
close to the actual PSD. The use of measurement conditions
significantly different from the optimum can result in a
measured PSD far different from the actual PSD, especially
at high frequencies. The SEMI standard for LER/LWR
measurement23 may or may not provide reasonable results
depending on the value of the correlation length.

Correcting the measured PSD for systematic biases is pos-
sible using the techniques developed above, but requires that
η, the measurement signal FWHM, to be known. Measuring
the PSD with a SEM that has an unknown value of η pro-
duces a PSD with unknown biases. Further work on this
topic should also include a method for evaluating the uncer-
tainty in the values of σ, ξ, and H extracted from a measured
PSD as a function of measurement parameters.
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