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Abstract 

 
Critical dimension scanning electron microscope (CD-SEM) metrology has long used empirical 
approaches to determine edge locations.  While such solutions are very flexible, physics-based 
models offer the potential for improved accuracy and precision for specific applications.  Here, 
Monte Carlo simulation is used to generate theoretical linescans from single step and line/space 
targets in order to build a physics-based analytical model.  The resulting analytical model fits the 
Monte Carlo simulation results for different feature heights, widths, and pitches.  While more 
work is required to further develop this scheme, this model is a candidate for a new class of 
improved edge detection algorithms for CD-SEMs. 

 
Subject Terms: Scanning electron microscope, SEM, linescan model, critical dimension, JMONSEL, CD-SEM, 
edge detection 
 

1. Introduction 
 
 Scanning electron microscopes (SEMs) are commonly used to measure critical dimensions (CDs) during 
semiconductor manufacturing.  A very narrow beam of electrons hits the sample at one location, interacting with the 
sample to scatter, lose energy, and generate secondary electrons that do the same.  A positively biased detector(s) 
measures electrons that escape from the sample, either backscattered electrons (with higher energies), secondary 
electrons (with lower energies), or both, depending on the detector configuration.  Scanning the position of the beam 
and recording the number of detected electrons at each position (pixel), a top-down image of the sample is constructed.  
Analysis of the image is often used to measure properties of the sample, such as the width of a feature (the CD).  
Extracting information about a sample from an image of the sample is a class of problems called the “inverse” problem, 
where the process of imaging is calculated in reverse.  Inverse problems can be solved easily if the imaging process is 
not too complex or if high accuracy is not required, but can become exceeding difficult when high accuracy is desired 
for complex processes.  Such is the case for analysis of SEM images. 
 
 The difficulty of the inverse problem can be understood by performing the forward calculations, that is, by 
simulating an image from a given, known sample.  For SEM imaging, this involves the use of a Monte Carlo style of 
simulation, since the interaction of electrons with a sample has major random components.  In this work, a Monte Carlo 
simulator for SEM image prediction called JMONSEL was used.1-3  The very nature of such Monte Carlo calculations 
makes inverse calculations virtually impossible.  Thus, most solutions to this inverse problem involve overly simplified 
approaches that take little or no account of the physics of SEM image formation:  image smoothing coupled with edge 
detection techniques such as threshold edge detection.4  These techniques, with much study and refinement, have proven 
adequate for the most part.  However, as feature sizes shrink and the demands for accurate measurements scale with 
those sizes, current methods may no longer suffice.5,6 
 
 An approach that has seen some success is model-based library matching.7-12  In this technique, the forward-
calculated imaging model is used to generate a library of images over a range of expected samples (different feature 
types and sizes of the desired materials).  When an experimental image is captured, it is matched to the closest library 
image (possibly using interpolation between images), which is then assumed to represent an accurate description of the 
experimental sample.  While effective, the model-based library approach suffers from the computational burden of 
generating a sufficiently robust library of images and a lack of flexibility to make up for library incompleteness. 
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 In this work, a third path is taken, somewhat intermediate between image processing that does not take the 
physics of image formation into account, and model-based library generation that is completely physics-based.  Here a 
simplified analytical linescan model (ALM) will be derived, inspired by the physics of electron-sample interactions 
(though still quite empirical in nature).13  The ALM will prove similar to the model proposed by Frase, who used the 
same basic approach adopted in this work.14  The ALM will be calibrated by fitting to Monte Carlo simulations of SEM 
images.  Once a set of ALM parameters has been calibrated, this new linescan model can be fit to experimental SEM 
images as a sort of physics-based edge detection algorithm.  While much work remains to be done to prove out this 
approach, preliminary results are quite encouraging. 
 

2. Simulation of Scanning Electron Micrograph Linescans 
 
 The first step in developing a simplified analytical linescan model is to generate a series of calculated SEM 
images from known sample structures.  Simulations of SEM images were performed using JMONSEL (Java Monte 
Carlo Simulator of Secondary Electrons), a program developed at the National Institute of Standards and Technology 
(NIST).1-3  JMONSEL is used here as a “virtual SEM”, where the user can input idealized structures from a limited list 
of materials, with perfect user-defined geometries.  The user can also define SEM parameters such as the number of 
incident electrons per pixel, pixel size, spot size, and beam energy. While the program can also account for charging 
phenomena in and around the sample and fields created by the detector, these effects were neglected in the simulations 
performed for this study. 
 
 The virtual samples consisted of isolated edges (steps) and line/space patterns of various sizes and pitches on a 
uniform substrate.  Features were made of either silicon or poly(methyl methacrylate) (PMMA), both on a planar silicon 
substrate.  PMMA was chosen as a reasonable approximation of photoresist.  Further, the sidewall angle of the edge or 
feature was varied between 45° and 91°.  The landing energy was set at 500 eV and a point beam of electrons was used 
at each pixel location (with the effect of a larger beam size to be included later).  Near the line edge, a pixel size of 
0.1 nm was used.  For most simulations N = 25,000 incident electrons per pixel were simulated.  An example linescan is 
shown in Figure 1. 
 
 

   

 

Figure 1. Example outputs from JMONSEL.  Top-left: Simulated trajectories in a 30 nm line/space Si-on-thin SiO2 structure at 
500 V and 0.5 nm incident spot (one standard deviation Gaussian profile), where the interaction volumes can be seen at feature tops 
and bottoms.  Top-right: Example linescan, including waveforms for secondary electron (SE) and backscatter electron (BSE) yields. 
SE electrons are defined as having energies ≤ 50 eV, with BSE electrons defined as having energies > 50 eV.  Bottom: Simulated 
image of same waveform for N=1000 (top) and N=100 (bottom).  Figure from Ref. 13. 
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3. Derivation of an Approximate Linescan Model for an Isolated Edge 
 
 Our previous work began the process of deriving a simple analytical linescan model.13  Here that model will be 
explained, expanded, and refined.  While the approach and model proposed by Frase14 is very similar, there are some 
differences.  The linescan, corresponding to the detected secondary electrons, will be SE(x). Consider first a bare silicon 
wafer (corresponding to when the scan beam is a long way from any feature edge). Inside the silicon we can assume that 
the energy deposition profile takes the form of a double Gaussian, with a forward scattering width and a fraction of the 
energy forward scattered, and a backscatter width and a fraction of the energy deposited by those backscattered 
electrons.  We will also assume that the number of secondary electrons that are generated within the wafer are in direct 
proportion to the energy deposited per unit volume, and the number of secondary electrons that escape the wafer (and so 
are detected by the SEM) are in direct proportion to the number of secondaries generated near the very top of the wafer. 
 
 The secondary electrons that reach the detector will emerge some distance r away from the position of the 
incident beam.  From the assumptions above, the number of secondaries emerging from the substrate will be a function 
of r as 
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where σf and σb are the forward and backscatter ranges, respectively.  The integration of this function over all space will 
be the linescan signal at x = -∞ (a long way from an isolated edge located at x = 0).  Carrying out this integration in 
polar coordinates, 
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 Now consider the effect of an isolated step located at x ≥ 0 (see Figure 2).  Before looking at a silicon or 
PMMA step, imagine a completely absorbing step that does not allow the release of secondary electrons.  In other 
words, all electrons that travel up into the step material simply disappear.  For x < 0, we can calculate the reduction in 
the SE signal by calculating the number of absorbed secondaries as 
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where r0 = x/cos(θ).  Carrying out the integration, 
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The linescan signal for x < 0 will be 
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Figure 2. Geometry and physical interpretation of wafer part of the analytical linescan model (ALM) derived in this paper, 
showing a PMMA edge on a silicon wafer. 
 
 
 In what will follow, the complimentary error functions will prove cumbersome.  However, since they are only 
used for x < 0 they can be approximated with exponentials with good-enough accuracy (the maximum error is less than 
5%, occurring at a distance of x/σ = -1.7). 
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We can now see how this model matches the rigorous Monte Carlo simulations of the linescan for the case of a 50-nm 
tall silicon edge at 500 V landing energy, using a point incident beam.  Figure 3 shows the best fit of equation (7) to the 
simulation results.  The best fit parameters are σf = 1.73 nm, σb = 40.4 nm, and β = 0.22.  The equation matches the 
simulations for the most part within the noise of the simulations (though some small systematic deviations can be 
observed), and the resulting parameters make intuitive sense for the scattering of 500 eV electrons in silicon. 
 
 The assumption of an absorbing step is not completely accurate for silicon, and even less so for a step made of 
photoresist.  In reality, backscatter electrons travel up into the step and generate secondaries that can escape from the 
sidewall of the step.  As a result, the step may not absorb all of the electrons entering, and in fact may generate more 
secondaries than if no step were present.  Further, the step may absorb electrons that escape the surface of the wafer 
near the step before those electrons can travel to the detector (see Figure 2).  These variations can be accommodated by 
simply modifying the forward scatter and backscatter step absorption terms in equation (7). 
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where αf is the fraction of forward scatter-generated secondaries absorbed by the step and αb is the fraction of 
backscatter-generated secondaries absorbed by the step.  Note that if the presence of the step results in more secondary 
electrons escaping to the detector, then the result will be a negative value of α.  In our previous work,13 the x < 0 
linescan model of equation (8) was compared to the Monte Carlo simulations for the cases of an isolated 50-nm tall 
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vertical (90º) silicon step on a silicon wafer and for a 50-nm tall vertical (90º) PMMA step on silicon, with landing 
voltages of 300, 500, and 800 V.  The fits of the model to the simulations were within the random variations present in 
the Monte Carlo results (using 5000 incident electrons per pixel), with the best-fit parameters shown in Table I. 
 

 
Figure 3. Best fit of equation (7) to rigorous Monte Carlo simulations of a 50-nm tall silicon edge at 500 eV landing energy, using 
a point incident beam, when x < 0 (that is, on the bottom half of the step).  The smooth (red) line is the equation and the jagged (blue) 
line is the Monte Carlo simulation. 
 
 

Table I.  Best fit parameters of equation (8) to rigorous Monte Carlo simulations of an isolated 
50-nm tall silicon step and PMMA step on a silicon wafer at 300, 500, and 800 V electron voltage, 

using a point incident beam, for x < 0 (from Ref. 13). 

 Electron Landing Voltage 

 300V 500V 800V 

Si wafer background signal, SE(-∞) 1.070 0.818 0.597 

Si forward scatter range, σf (nm) 1.37 2.31 3.96 

Si backscatter range, σb (nm) 43.5 43.0 43.7 

Si step forward scatter absorption, αf 0.223 0.243 0.267 

Si step backscatter absorption, αb 0.251 0.212 0.171 

PMMA step forward scatter absorption, αf 0.272 0.316 0.363 

PMMA step backscatter absorption, αb 0.055 -0.047 -0.162 

 
 
 Expanding on these prior results, the step height was varied from 10 nm to 100 nm for the case of a 500 V 
incident beam, but now using 25,000 incident electrons per pixel for increased precision.  The results are shown in 
Figures 4 – 6, for each of the parameters of the model.  The error bars represent the range of the parameter that keeps 
the RMS fit error within 5% of its best fit value, holding all other parameters constant.  (Thus, these error bars do not 
represent standard errors of the parameters since the do not account for correlations between parameters).   
 
 Examining these results one can draw two major conclusions.  First, as Figure 6 shows, the backscatter range 
parameter σb varies linearly with step height.  Taller steps influence the linescan out to a distance away from the edge 
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about equal to the step height, indicating that the major mechanism of SE absorption by the step comes from 
secondaries released from the wafer surface that strike the step sidewall.  Second, all other parameters are essentially 
constant for step heights greater than about 20 nm for both silicon and PMMA steps.  This 20-nm “threshold” thickness 
is expected to be a function of voltage, becoming thicker for voltages greater the 500 V, and thinner for voltages less 
than 500 V. 
 
 When x > 0, the incident beam is on top of the step.  A model similar to that described for the bottom of the 
step can be applied to the top, but with some differences.  The edge of the step does not absorb the long-range 
backscattered electrons, and in fact enhances the release of secondaries created by the forward scattered electrons.  

Thus, we will add a positive term ex
ee

σα /−
 to account for the enhanced escape of forward-scattered secondaries where 

σe is very similar to the forward scatter range of the step material.  When the incident beam is very close to the step, 
however, the interaction volume of the forward-scattered electrons with the material is reduced, causing the generation 

of less secondaries.  Thus, we subtract a term vx
v e σα /−  where σv < σe.  This gives our linescan expression for the top 

of the step: 
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 (a) (b) 
 

     
 (c) (d) 

Figure 4. Best fit parameters of equation (8) to rigorous Monte Carlo simulations of an isolated silicon edge at 500 eV landing 
energy, using a point incident beam, when x < 0 (that is, on the bottom half of the step) for various step heights.  All parameters are 
shown here except the wafer backscatter range σb, which is shown in Figure 6. 
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 (a) (b) 
 

     
 (c) (d) 

Figure 5. Best fit parameters of equation (8) to rigorous Monte Carlo simulations of an isolated PMMA edge at 500 eV landing 
energy, using a point incident beam, when x < 0 (that is, on the bottom half of the step) for various step heights.  All parameters are 
shown here except the wafer backscatter range σb, which is shown in Figure 6. 
 
 

     
 (a) (b) 

Figure 6. Best fit of the wafer backscatter range σb of equation (8) to rigorous Monte Carlo simulations of (a) a silicon edge, and 
(b) a PMMA edge on a silicon wafer at 500 eV landing energy, using a point incident beam, when x < 0 (that is, on the bottom half of 
the step) for various step heights.   
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 In our previous work,13 the x > 0 linescan model of equation (9) was compared to the Monte Carlo simulations 
for the cases of an isolated 50-nm tall vertical (90º) silicon step on silicon and for a 50-nm tall vertical (90º) PMMA 
step on silicon, with landing voltages of 300, 500, and 800 V.  The fits of the model to the simulations were within the 
random variations present in the Monte Carlo results (using 5000 incident electrons per pixel), with the best-fit 
parameters shown in Table II.   
 
 

Table II.  Best fit parameters to rigorous Monte Carlo simulations of an isolated 50-nm tall silicon step and PMMA 
step on a silicon wafer at 300, 500, and 800 V electron landing voltage, using a point incident beam (from Ref. 13). 

 Electron Landing Voltage 

 300V 500V 800V 

Si step forward scatter range, σe (nm) 1.47 2.64 4.65 

Si step volume loss range, σv (nm) 0.40 0.27 0.11 

Si step edge enhancement factor, αe 1.61 1.65 1.87 

Si step volume loss factor, αv 0.924 0.660 0.543 

PMMA step forward scatter range, σe (nm) 3.42 3.54 5.28 

PMMA step volume loss range, σv (nm) 0.53 1.43 2.39 

PMMA step edge enhancement factor, αe 0.382 1.427 2.784 

PMMA step volume loss factor, αv 0.347 1.143 1.968 

PMMA background signal, SE(∞) 2.286 2.132 1.552 

 
 
 Expanding on these results, the step height was varied from 10 nm to 100 nm for the case of a 500 V incident 
beam, using 25,000 incident electrons per pixel.  The results are shown in Figures 7 – 8, for each of the top-of-the-step 
parameters of the model.  Examining these results, all the parameters remain approximately constant for silicon or 
PMMA step heights greater than about 20 nm.   
 
 Combining the x < 0 and x > 0 linescan expressions into one expression (using the unit step function, u(x)), we 
have a final linescan expression for the case of a point incident beam and a vertical isolated step. 
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 Next, the sidewall angle of the steps was varied from 45º to 91º.  As an extreme case, 45º isolated 20-nm and 
50-nm tall silicon steps produce the simulated linescans shown in Figure 9.  The linescans can be broken up into three 
regions:  to the left of the bottom of the edge (corresponding to the wafer, and represented by the linescan function of 
equation (8)), to the right of the top of the edge (represented by the linescan function of equation (9)), and the middle 
region corresponding to the sloped edge itself.  Thus, a new linescan function for this middle region is required. 
 
 Examining Figure 9, the middle of the sidewall region has a steady secondary electron signal, which we will 
call SEedge, at a higher level than the background wafer.  This signal level then falls to the bottom level over a 
characteristic distance δ1 at the bottom of the step, and rises to the top level over a characteristic distance δ2 at the top of 
the step, forming an S-shaped waveform.  Defining x = 0 to be the bottom (left) edge of a step of height h and sidewall 
angle θ, the top (right) edge will be at x = h/tanθ.  A reasonable model for the linescan in this step region will be 
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Here, h/tanθ is assumed to be large compared to δ1 and δ2, but simple modifications to equation (11) can be made if this 
is not the case.  Equation (11) applies to sidewall angles less than 90º.  For small amounts of profile undercut (θ > 90º), 
the resulting linescan can still be fit using the linescan function of equation (10).  
 
 

     
 (a) (b) 

     
 (c) (d) 

Figure 7. Best fit parameters of equation (9) to rigorous Monte Carlo simulations of an isolated silicon edge at 500 eV landing 
energy, using a point incident beam, when x > 0 (that is, on the top half of the step) for various step heights.   
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 (a) (b) 
 

     
 (c) (d) 

 

 
 (e) 

Figure 8. Best fit parameters of equation (9) to rigorous Monte Carlo simulations of an isolated PMMA edge at 500 eV landing 
energy, using a point incident beam, when x > 0 (that is, on the top half of the step) for various step heights.   
 
 



Metrology, Inspection, and Process Control for Microlithography XXIX, Proc. SPIE Vol. 9424 (2015) 11 
 

   
 (a) (b) 

Figure 9. Monte Carlo simulations of an isolated silicon edge with a 45º sidewall angle at 500 V, using a point incident beam, for 
(a) a 20-nm tall step, and (b) a 50-nm tall step. 
 
 
 Fitting the full linescan model (equations (8), (9), (11) for the wafer, top of step, and sidewall regions, 
respectively) shows that many of the model parameters are a function of the sidewall angle.  In the wafer region, the 
wafer background signal SE(-∞), wafer forward scatter range σf, and wafer backscatter range σb are approximately 
independent of sidewall angle for both step materials.  For the silicon step, the wafer backscatter absorption αb varies 
approximately as the square of 1-cos(θ) (Figure 10a).  As the sidewall angle approaches zero, the step no longer absorbs 
the secondaries generated by backscattered electrons.  For the PMMA step, the negative value of αb leads to a different, 
quadratic behavior (Figure 11a).  For the silicon step, the wafer forward scatter absorption parameter αf is 
approximately independent of sidewall angle, but for the PMMA step it increases approximately linearly with 1-cos(θ) 
(Figure 11b). 
 
 Letting p~  represent the value of a parameter p for a 90º step, the variation of the wafer linescan parameters 

with sidewall angle take the form 
hsbb =σ  

Silicon Step:  ( )2cos1~ θαα −= bb  

PMMA Step: ( ) ( )( )θαθα cos1213.0~cos1213.0 2 −−+−= bb  

PMMA Step: ( )( )θαα cos1066.0~066.0 −−+= ff  

(12) 

 
 On the top of the step, the step forward scatter range σe varies linearly with the square of 1-cos(θ) (Figures 10b 
and 11c).  For the silicon step on a silicon wafer it goes between the wafer forward scatter range when θ = 0º to the step 
forward scatter range when θ = 90º.  The step edge enhancement factor αe varies linearly with 1-cos(θ) (Figures 10c and 
11d).  The step volume loss range σv is independent of sidewall angle, but the step volume loss factor αv is highly 
nonlinear with sidewall angle (Figures 10d and 11e).  For the silicon step, the step volume loss factor is zero for angles 
of 79º and below, then rises roughly as 1-cos(θ) to the fourth power.  For the PMMA step, the step volume loss factor 
goes roughly as 1-cos(θ) to the fourth power over all angles. 
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Silicon Step: ( )( )2cos1~ θσσσσ −−+= fefe  

PMMA Step: ( )( )2cos149.3~49.3 θσσ −−+= ee  

( )θαα cos1~ −= ee  

Silicon Step: ( )( )4cos148.0~48.0 θαα −++−= vv ,  θ  > 79º 

PMMA Step: ( )4cos1~ θαα −= vv  

(13) 

 
 As for the sidewall region parameters, the value of SEedge is roughly quadratic with 1-cos(θ) with a peak at 
about 75º – 80º (Figures 10e and 11f).  For the silicon step, the decrease in SEedge for the higher angles is small and 
probably negligible, but for the PMMA edge it is significant.  Note that the SEedge behavior observed here is not 
proportional to 1/cos(θ) as is often assumed.  For the silicon step, the length parameters δ1 and δ2 are both linear with 
cos(θ) (Figure 10f).  For the PMMA step, δ1 is linear with cos(θ), but rises much more quickly than for the silicon step 
(Figure 11g).  Unlike the silicon step, δ2 goes as cos2(θ) for the PMMA step (Figure 11f). 
 

PMMA Step: θcos4
~ += edgeedge ESSE ,  θ  > 79º 

θδδ cos
~
11 =  

Silicon Step: θδδ cos
~
22 =  

PMMA Step: θδδ 2
22 cos

~
=  

(14) 

 
 All of these trends can be combined into one equation for the cases where the step height h ≥ 20 nm and the 
sidewall angle θ ≥ 80º (for the 500 V case).  The resulting best fit parameters over this range of conditions for both a 
silicon step and a PMMA step are given in Table III.  An example of a fit using these parameters is given in Figure 12 
for the case of a 20-nm tall PMMA step with an 80º sidewall angle. 
 
 Real scanning electron microscopes do not have point beams of electrons impinging on the sample.  Instead, 
the beam is approximately a Gaussian owing to the finite resolution of the microscope and other beam non-idealities.  
Thus, the expected linescan will be the point linescan model (equations (8), (9), and (11) combined) convolved with a 
Gaussian.  Carrying out this convolution for the case of a 90º step gives13 
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(15) 

 
where σp is the standard deviation (width parameter) of the incident Gaussian electron beam probe.  For the case of a 
sidewall angle less than or equal to 90º, 
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 The 90º linescan model of equation (15) has 11 physically meaningful parameters (or 10 for the case of a 
silicon step on a silicon wafer since SE(∞) = SE(-∞)).  For the case of a sloped sidewall, three more parameters are 
added.  Not all of the terms in the above equation will prove to be significant, however, depending on the application for 
the equation.  For example, if the Gaussian beam sigma is σb = 0.5 nm, a number typical for today’s high-end CD-

SEMs,15 then all of the terms of the form 
22 2/ σσ pe  will be very close to 1 whenever σ > 1 nm, which is the case for 

every parameter except σv for a silicon step.  For the PMMA step, the wafer backscatter absorption term is very small, 
and can easily be neglected with only minor error.  Also for the PMMA step, near-normal sidewall angles (greater than 
85º) result in very small values of δ2, so that the term multiplied by c2 can be neglected.  Finally, for the case where 
SE(∞) = SE(-∞), we see that 
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 (e) (f) 

Figure 10. Best fit parameters of the edge linescan model to rigorous Monte Carlo simulations of an isolated 20-nm tall silicon edge 
at 500 eV landing energy, using a point incident beam, for various sidewall angles between 45º and 91º.   
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 (g) (h) 

Figure 11. Best fit parameters of the edge linescan model to rigorous Monte Carlo simulations of an isolated 20-nm tall PMMA 
edge at 500 eV landing energy, using a point incident beam, for various sidewall angles between 45º and 91º.   
 
 

Table III.  Best fit parameters to rigorous Monte Carlo simulations of an isolated silicon step and 
PMMA step on a silicon wafer at 500 V electron landing voltage, using a point incident beam. 

 
Silicon 
Step 

PMMA 
Step 

Si wafer background signal, SE(-∞) 0.817 0.817 

Si wafer forward scatter range, σf (nm) 1.86 2.24 

Si wafer backscatter range per step height, sb = σb/h 0.90 1.35 

Si wafer forward scatter absorption, fα~  0.235 0.318 

Si wafer backscatter absorption, bα~  0.23 –0.057 

Step sidewall signal, edgeES
~

 1.65 2.9 

Step bottom sidewall roll-off distance, 1
~δ  (nm) 3.3 10 

Step top sidewall roll-off distance, 2
~δ  (nm) 1.75 2.96 

Step forward scatter range, eσ~  (nm) 2.66 3.80 

Step volume loss range, σv (nm) 0.26 1.24 

Step edge enhancement factor, eα~  1.65 1.19 

Step volume loss factor, vα~  0.63 0.93 

Step background signal, SE(∞) 0.817 2.13 
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Figure 12. Comparison of the full linescan model of a step (equations (8), (9), and (11) using the angle relationships of equations 
(12), (13), and (14)) to rigorous Monte Carlo simulations of a 20-nm tall, 80º PMMA edge at 500 V, using a point incident beam.  
The smooth (red) line is the equation and the jagged (blue) line is the Monte Carlo simulation.  RMS error of the fit is 0.013. 
 

4. Derivation of an Approximate Linescan Model for 1-D Features 
 
 To first order, one would expect that a feature such as a line or a space could be constructed simply as the 
combination of two edges, using the ALM for an edge derived in the previous section.  We expect this to be true 
whenever the feature size is large compared to the SEM probe dimension, σp.  Since this must necessarily be so for any 
useful metrology, we begin our derivation of the linescan of a feature by properly positioning the linescans of edges.  To 
test this hypothesis, Monte Carlo Simulations of various silicon and PMMA features of various widths, pitches, and 
thicknesses (heights) were generated.  Figure 13 shows an example of a 15-nm wide feature made of 30-nm thick 
silicon, on a 100-nm pitch (Figure 13a) and a 30-nm pitch (Figure 13b).  Added to the graphs are analytical linescan 
models made by simply combining edges. 
 

   
 (a) (b) 

Figure 13. The combination of edge linescans (red smooth curves) are compared to Monte Carlo simulations (blue jagged curves) of 
30-nm tall silicon features, each 15-nm wide with 90º sidewalls, at 500 eV landing energy, using a point incident beam, for (a) pitch 
= 100 nm (RMS error = 0.036), and (b) pitch = 30 nm (RMS error = 0.25).   
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 While the general shape of the ALM matches the Monte Carlo simulation results, there is a lower overall signal 
for the case of the small 15-nm space compared to the larger 85-nm space.  Examining simulations over a range of 
feature sizes and pitches, it is the size of the space that contributes to this discrepancy for the most part.  This can be 
explained as an added difficulty for electrons to escape from a narrow space (see Figure 1, for example).  The linescan 
model can be made to fit the line/space Monte Carlo data by adjusting two parameters as a function of the space width:  
the step edge enhancement factor αe, and the wafer background signal SE(-∞). 
 
 Simulations were performed for lines of sizes 7, 10, 15, 20, 30, and 50 nm, and pitches corresponding to dense 
(spacewidth = linewidth) and a 100-nm pitch, using a 500V point incident beam.  For the 50-nm linesize a 120-nm pitch 
was added.  Both silicon and PMMA features were modeled on a silicon wafer, with feature heights of 10, 15, 20, 30, 
and 50 nm.  The sidewall angle was fixed at 90º.  Using the edge ALM of the previous section, feature linescans were 
modeled as the sum of edges, then the parameters step edge enhancement factor αe and wafer background signal SE(-∞) 
were adjusted to provide the best fit to the simulation data.  Figure 15 shows an example of the results for the case of 
30-nm tall, 15-nm wide silicon features.  Similarly acceptable fits were obtained for all features except the smallest and 
densest PMMA features:  7-nm line/space and 10-nm line/space patterns.  Examples of these worst-case results are 
shown in Figure 16.  Note that these small features approach and enter the regime where the features become smaller 
than the electron beam’s interaction volume, so that the linescans converge from two peaks to one peak.  The ALM 
proposed here does a very good job of capturing these effects for the 7-nm features. 
 
 To build a model from these results, the data from Figure 15 was fit to a stretched exponential: 
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where s is the spacewidth.  The best fit values of the length scales ∆1 and ∆2, and the powers P1 and P2, are found in 
Table IV. 
 
 

Table IV.  Best fit parameters of equation (18) to rigorous Monte Carlo simulations of different feature sizes 
and pitches at 500 V electron landing voltage, using a point incident beam. 

Feature Height 10 nm 15 nm 20 nm 30 nm 50 nm 

Silicon Feature:      

SE(-∞) space length scale ∆1 (nm) 2.6 6.3 9.2 15.1 26.3 

SE(-∞) space power P1 0.53 0.68 0.96 1.0 1.0 

αe space length scale ∆2 (nm) 10.0 15.2 19.6 25.9 38.2 

αe space power P2 0.70 0.67 0.64 0.59 0.49 

PMMA Feature:      

SE(-∞) space length scale ∆1 (nm) 0.11 1.3 3.8 10.4 22.8 

SE(-∞) space power P1 0.25 0.40 0.53 0.68 0.89 

αe space length scale ∆2 (nm) 2.5 2.2 4.0 3.4 3.1 

αe space power P2 0.49 0.42 0.50 0.48 0.47 
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 (a) (b) 

Figure 14. The linescan model made from the combination of two edge linescans (red smooth curves) is adjusted to match the 
Monte Carlo simulation results (blue jagged curves) by changing the step edge enhancement factor αe and the wafer background 
signal SE(-∞).  This data, corresponding to the case of Figure 13, is representative of the results obtained (RMS error = 0.012 and 
0.014 for (a) and (b), respectively). 
 
 
 

    
Figure 15. The feature ALM is matched to Monte Carlo results for 30-nm tall silicon features.  Shown (symbols) are the best fit 
values of (a) the step edge enhancement factor αe, and (b) wafer background signal SE(-∞) as a function of the spacewidth between 
line features.  The curves are fits of equation (18) to these points. 
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 (a) (b) 

Figure 16. The ALM made from the combination of two edge linescans (red smooth curves) is adjusted to match the Monte Carlo 
simulation results (blue jagged curves) by changing the step edge enhancement factor αe and the wafer background signal 
SE(-∞).  Small pitch PMMA lines showed the worst fits, such as (a) 7-nm lines and spaces (RMS error = 0.064), and (b) 15-nm lines 
and spaces (RMS error = 0.038) for 20-nm tall PMMA features. 
 

5. Stability Test of Approximate Linescan Model for 1-D Features 
 
 One important goal of this work is to use the ALM as a more rigorous edge detection and CD measurement 
algorithm.  Given a noisy SEM image, will the linescan model, with material parameters calibrated ahead of time, do a 
better job of extracting the correct feature size and sidewall angle than conventional edge detection algorithms?  To 
study this, linescans were generated for 500 V beam landing voltage and N = 10000 incident electron per pixel on 
PMMA line/space features on silicon.  The benchmark case will use 10-nm lines on a 20-nm pitch, 30-nm height, and 
89º sidewalls.  The generated linescans used a 0.01nm beam width (1σ), so the linescans first were convoluted with a 
0.5nm 1σ Gaussian beam profile to convert them into realistic linescans representative of contemporary CD-SEM 
imaging capabilities.15  Noise with a Gaussian distribution was added to each pixel, in amounts equivalent to the noise 
expected if the number of incident electrons per pixel were N = 250, 500 or 1000, which roughly covers the dose range 
commonly used.  The noise baseline was computed by repeating one of the cases several times at N = 10000, and 
adjusted according to the well-known N-1/2 dependence.  Noise was then doubled yet again, to account for extra error 
budget due to other potential real-world noise sources that are not comprehended in the JMONSEL modelling 
(vibrations, electromagnetics, charging, etc.).  Examples of these linescans can be seen in Figure 17.  Ten linescans 
were generated for each of the above cases, and for each the ALM was fit adjusting only the CD and sidewall angle, 
leading to relative values for expected accuracy and precision, as was done in previous works.12,15 
 
 Various common edge detection algorithms were applied to these virtual SEM linescans.  While other 
algorithms are available, here we apply three of the simpler algorithms: threshold (TH), linear regression to baseline 
(LR), and maximum derivative (MD).  While the TH algorithm is simplistic, it is the most common algorithm in use in 
the industry, and is very flexible for any waveform since it can be carefully set to target individual details on a 
waveform.  The weakness of TH is its sensitivity to noise variation, but in this simulation study noise is well-controlled.  
LR is also commonly used, and is interesting as it represents the general class of “curve-fitting” algorithms which are 
better at handling noise. The MD algorithm is even more vulnerable to noise than TH, but is still used by some users.  
Details on these algorithms can be seen elsewhere.4,15  The benchmark linescan with random noise instances was 
measured by each edge algorithm (10 times each for the analytical linescan model, 1000 times each for the standard 
algorithms), using no filtering.  The output is a sample of CD values (and for the case of the analytical linescan, 
sidewall angle values as well) with averages and standard deviations, which relate to accuracy and precision.  Note that 
one advantage of working with simulations is that accuracy is knowable since the targets are perfectly defined. 
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 Results are shown in Figure 18 (MD results were excluded from the figure because those results were much 
worse than the others).  The TH algorithm used a 25% threshold, and the LR used a 50% threshold with 20% and 80% 
lower and upper fulcrums.  Relative precision is equivalent to the edge detection reproducibility σε discussed 
elsewhere.4,15Error! Bookmark not defined. 
 
 
 

   
 (a) (b) 

Figure 17. Simulated linescans at 500 V for 10-nm wide PMMA lines of 20-nm pitch and 30-nm height with 89º sidewall angle:  (a) 
the base linescans using N=10000 electrons per pixel, with a perfect beam (solid black line) and the convoluted 0.5-nm beam (red 
dashed line), and (b) convoluted beam with added noise instances. 
 
 
 

     
 (a) (b) 

Figure 18. Comparison of performance of different algorithms for CD measurement of features in Figure 17 (TH = threshold, LR = 
linear regression, AL = analytical linescan model):  (a) CD bias, and (b) relative CD precision, σε. 
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6. Conclusions and Future Work 
 
 The analytical linescan model (ALM) that has been developed in this work offers several important 
advantages.  After calibration against a rigorous Monte Carlo simulator for the various materials involved in the sample, 
the ALM can, with quite reasonable accuracy, predict the linescans of those materials for a wide variety of geometric 
shapes.  In particular, for feature thicknesses of greater than 20 nm (for the case of a 500 eV landing energy) and 
sidewall angles greater than 80º, the calibrated ALM matches the Monte Carlo simulated secondary electron waveforms 
over a wide range of feature sizes, pitches, thickness, and sidewall angles.  While only silicon and PMMA features on 
silicon wafers were tested, it is expected that similar calibration procedures would yield similar results for a wide 
variety of materials.  Since the model is based on reasonable physical assumptions and uses physically-based 
parameters, both interpolations and extrapolations to a wide range of geometries should prove possible. 
 
 One possible use of the ALM is as a physics-based edge detection/linewidth measurement algorithm.  While 
the results presented here are preliminary, they are sufficiently encouraging to hope that such an application could 
become practical with further effort.  It is likely that the complete ALM presented here could be greatly simplified when 
working in the real world of noisy images and moderately wide beams.  Other real-world effects, such as baseline drift 
and intensity scale variation, must also be added to the model to make it practical in the field.  Additionally, a robust 
calibration procedure must be developed if routine use of the ALM is envisioned.  Finally, extensive testing using 
experimental SEM images would be required.  While the work remaining is extensive, the promise of a physically based 
linescan measurement algorithm with improved accuracy and precision for both CD and sidewall angle for feature sizes 
of 10 nm and below might justify the effort. 
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