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Chapter 1 

Introduction 
 
 Optical lithography modeling began in the early 1970s when Rick Dill 
started an effort at IBM Yorktown Heights Research Center to describe the basic 
steps of the lithography process with mathematical equations.  At a time when 
lithography was considered a true art, such an approach was met with much 
skepticism.  The results of their pioneering work were published in a landmark 
series of papers in 1975 [1.1-1.4], now referred to as the “Dill papers.”  These 
papers not only gave birth to the field of lithography modeling, they represented 
the first serious attempt to describe lithography not as an art, but as a science.  
These papers presented a simple model for image formation with incoherent 
illumination, the first order kinetic “Dill model” of exposure, and an empirical 
model for development coupled with a cell algorithm for photoresist profile 
calculation.  The Dill papers are still the most referenced works in the body of 
lithography literature. 
 
 While Dill’s group worked on the beginnings of lithography simulation, 
a professor from the University of California at Berkeley, Andy Neureuther, 
spent a year on sabbatical working with Dill.  Upon returning to Berkeley, 
Neureuther and another professor, Bill Oldham, started their own modeling 
effort.  In 1979 they presented the first result of their effort, the lithography 
modeling program SAMPLE [1.5].  SAMPLE improved the state of the art in 
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lithography modeling by adding partial coherence to the image calculations and 
by replacing the cell algorithm for dissolution calculations with a string 
algorithm.  But more importantly, SAMPLE was made available to the 
lithography community.  For the first time, researchers in the field could use 
modeling as a tool to help understand and improve their lithography processes. 
 
 The author began working in the area of lithographic simulation in 1983 
and in 1985 introduced the model PROLITH (the Positive Resist Optical 
LITHography model) [1.6].  This model added an analytical expression for the 
standing wave intensity in the resist, a prebake model, a kinetic model for resist 
development (now known as the Mack model), and the first model for contact 
and proximity printing.  PROLITH was also the first lithography simulator to run 
on a personal computer (the IBM PC), making lithography modeling accessible 
to all lithographers, from advanced researchers to process development engineers 
to manufacturing engineers.  Over the years, PROLITH advanced to include a 
model for contrast enhancement materials, the extended source method for 
partially coherent image calculations, and an advanced focus model for high 
numerical aperture imaging. 
 
 In 1990, a commercial version of PROLITH was introduced by FINLE 
Technologies and was called PROLITH/2, the second generation optical 
lithography model.  This model combined the advanced calculations of 
PROLITH with an easy-to-use interface and impressive graphics to provide a 
complete modeling package.  In the years since its introduction, PROLITH/2 has 
continued to advance the state-of-the-art in lithography simulation while 
becoming the world’s most popular lithography model.  PROLITH/2 has become 
the cornerstone of the PROLITH family of lithography simulation software.  In 
addition to PROLITH/2, PROXLITH/2 has been developed to simulate contact 
and proximity printing, and PROLITH/3D extends the two-dimensional 
modeling of PROLITH/2 into three dimensions.  ProCD performs statistical 
analysis of simulated linewidth data to predict linewidth distributions across the 
wafer.  Finally, ProABC and ProDRM analyze experimental resist data to extract 
the exposure and development modeling parameters of the resist. 
 
 The PROLITH family provides an extensive suite of software 
applications for predicting and analyzing lithography.  This book, however, is 
focused mostly on PROLITH/2 and PROLITH/3D.  Chapter 4 describes the 
diffraction models specific to PROXLITH/2, and some information about 
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ProABC and ProDRM can be found in Chapters 5 and 7, respectively.  ProCD is 
not discussed but is mentioned in Chapter 10. 
 
 PROLITH/2 simulates the basic lithographic steps of image formation, 
resist exposure, post-exposure bake diffusion, and development to obtain a final 
resist profile.  Figure 1-1 shows a basic schematic of the calculation steps 
required for lithography modeling.  Below is a brief overview of the physical 
models found in PROLITH/2.  More details on these models can be found in 
subsequent chapters. 
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Figure 1-1. Flow diagram of a lithography model. 
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Aerial Image:  The extended source method is used to predict the aerial 
image of a partially coherent diffraction limited or aberrated projection 
system based on scalar and/or vector diffraction theory.  Single 
wavelength or broadband illumination can be used.  The standard image 
model accounts for the important effect of image defocus through the 
resist film.  Mask patterns can be one-dimensional lines and spaces or 
small two dimensional contacts and islands.  Phase-shifting masks and 
off-axis illumination can be simulated with optional modules.  Pupil 
filters can be defined.  The user can also select the high-NA scalar model 
to increase the accuracy of calculations for numerical apertures of 0.5 or 
greater, and an optional vector model can be used for very high 
numerical apertures.  An optional module allows the user to simulate 
arbitrarily complex two-dimensional mask features as well. 
 
Standing Waves:  An analytical expression is used to calculate the 
standing wave intensity as a function of depth into the resist, including 
the effects of resist bleaching, on planar substrates.  Film stacks can be 
defined below the resist with up to 14 layers between the resist and 
substrate.  Contrast enhancement layers or top-layer anti-reflection 
coatings can also be included.  The high NA models include the effects 
of non-vertical light propagation. 
 
Prebake:  Thermal decomposition of the photoresist photoactive 
compound during prebake is modeled using first order kinetics resulting 
in a change in the resist's optical properties (the Dill parameters A and 
B).  Many important bake effects, however, are not yet well understood. 
 
Exposure:  First order kinetics are used to model the chemistry of 
exposure using the standard Dill ABC parameters.  Both positive and 
negative resists can be simulated. 
 
Post-Exposure Bake:  A two-dimensional (or three-dimensional for 
PROLITH/3D) diffusion calculation allows the post-exposure bake to 
reduce the effects of standing waves.  For chemically amplified resists, 
this diffusion is accompanied by an amplification reaction which 
accounts for crosslinking, blocking, or deblocking in an acid catalyzed 
reaction.  Acid loss mechanisms and non-constant diffusivity can also be 
simulated. 
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Development:  The Mack kinetic model or the enhanced Mack model 
for resist dissolution are used in conjunction with an etching algorithm to 
determine the resist profile.  Surface inhibition or enhancement can also 
be taken into account.  Alternatively, a data file of development rate 
information can be used. 
 
CD Measurement: Three models for measurement of the photoresist 
linewidth gives accuracy and flexibility to match the model to an actual 
CD measurement tool. 
 
Lumped Parameter Model:  This simple two-parameter model of resist 
exposure and development allows for extremely fast calculation of a 
focus-exposure matrix and the resulting process window.  Although not 
as accurate as the full PROLITH/2 models, the LPM is ideal for quick 
results and optimization work. 

 
The combination of the models described above provides a complete 
mathematical description of the optical lithography process.  Use of the models 
incorporated in PROLITH/2 allows the user to investigate many interesting and 
important aspects of optical lithography.  The following chapters describe each 
of the models in detail, including derivations of most of the mathematical models 
as well as physical descriptions of their basis.  The final chapter describes a 
variety of uses for lithography simulation. 
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Chapter 2 
Aerial Image Formation 

 
 
Projection printing means projecting the image of a photomask (also called a 
reticle) onto a resist coated wafer.  The imaging process is a well-studied optical 
phenomenon.  We will begin at the most basic level with a mathematical 
description of light. 
 
A.  Mathematical Description of Light 
 
 Light is an electromagnetic wave with coupled electric and magnetic 
fields traveling through space.  Since the electric and magnetic fields are related 
to each other (the magnetic field is always perpendicular to the electric field and 
both fields are always perpendicular to the direction of propagation) and since 
photoresist reacts chemically to the electric field only, we can describe light by 
describing just the electric field.  A general electric field E (due to 
monochromatic light of frequency ) at any point P and time t can be described 
by a deceptively simple sinusoidal equation. 
 
 
  E P t A P t P( ), ( ) cos ( )    (2.1) 
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where A is the amplitude and  is the phase, both of which are position 
dependent, in general.  Equation (2.1) is a general solution to the Helmholtz 
wave equation, which is itself a simplification and combination of Maxwell’s 
equations for the propagation of electromagnetic waves.  As an example of one 
form of equation (2.1), consider a “plane wave” of light traveling in the +z 
direction.  The term plane wave refers to the shape of the wavefront, i.e., the 
shape of the function (P) = constant.  Thus, a plane wave traveling in the +z 
direction would require a constant phase (and, incidentally, a constant 
amplitude) in the x-y plane.  Such a plane wave would be described by the 
equation 
 
  E P t A t kz( ), cos    (2.2) 
 
where k is a constant called the propagation constant or the wave number.   
 
 How does the wave represented by equation (2.2) propagate?  We can 
think of the wave as having a certain shape, and this shape travels through time.  
Thus, this wave will have the given shape at all points in space and time such 
that t - kz = constant, giving the same electric field.  In other words, the 
wavefront (a plane in this case) travels through space and time according to 
 
 z z k t 0    (2.3) 
 
where zo is a constant corresponding to the position of the plane wave at t=0.  
This is simply a plane of light traveling in the +z direction at speed /k.   
 
 Although equation (2.1) completely describes an arbitrary 
electromagnetic field, a more compact and convenient representation is possible 
based on the assumption that the frequency of the light does not change (quite a 
good assumption under normal optical conditions).  A sinusoid can be related to 
a complex exponential by 
 
    E P t A P t P U P e i t( ), ( )cos ( ) Re ( )      (2.4) 
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where U P A P e i P( ) ( ) ( )    
 
and U(P) is called the phasor representation of the sinusoidal electric field 
E(P,t).  Notice that this phasor representation shows no time dependence.  Study 
of the basic behavior of light has shown that the time dependence of the electric 
field typically does not change as light travels, interferes, and interacts with 
matter.  Thus, suppressing the time dependence and expressing the electric field 
as a phasor has become quite common in the mathematical analysis of optical 
systems. 
 
 Since converting back to the time domain involves taking the real part of 
the phasor, the sign of the phase in U(P) and in the time dependent term could 
just as easily have been chosen to be positive rather than negative.  The sign 
convention chosen is not consistent among authors and there is no absolute 
standard.  The sign convention represented by equation (2.4) is used by 
Goodman [2.1] and in other standard optics textbooks dealing with imaging.  
Using this convention, a plane wave traveling in the +z direction (i.e., equation 
(2.2)) would be written as 
 
 U P Ae ikz( )   (2.5) 
 
 The negative phase sign convention of equation (2.4) is the most 
common for imaging applications.  Unfortunately, most publications and 
textbooks in the area of thin film interference effects and coatings use the 
positive phase sign convention.  For this thin film sign convention, equation 
(2.5) would represent a plane wave traveling in the -z direction.  Lithography 
simulation uses both imaging calculations and thin film interference 
calculations.  As such, both of these competing “standard” sign conventions will 
be used in this book, mainly for historical reasons.  Of course, this is terribly 
confusing, but I will try to alleviate the confusion by clarifying the sign 
convention used throughout this book. 
 
B.  Basic Imaging Theory 
 
 Consider the generic projection system shown in Figure 2-1.  It consists 
of a light source, a condenser lens, the mask, the objective lens, and finally the 
resist-coated wafer.  The combination of the light source and the condenser lens 
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is called the illumination system.  In optical design terms a lens is a system of 
(possibly many) lens elements.  Each lens element is an individual piece of glass 
(refractive element) or a mirror (reflective element).  The purpose of the 
illumination system is to deliver light to the mask (and eventually into the 
objective lens) with sufficient intensity, the proper directionality and spectral 
characteristics, and adequate uniformity across the field.  The light then passes 
through the clear areas of the mask and diffracts on its way to the objective lens.  
The purpose of the objective lens is to pick up a portion of the diffraction pattern 
and project an image onto the wafer which, one hopes, will resemble the mask 
pattern. 
 
 The first and most basic phenomenon occurring here is the diffraction of 
light.  Diffraction is usually thought of as the bending of light as it passes 
through an aperture, which is certainly an appropriate description for diffraction 
by a lithographic mask.  More correctly, diffraction theory simply describes how 
light propagates. This propagation includes the effects of the surroundings 
(boundaries).  Maxwell's equations describe how electromagnetic waves 
propagate, but result in partial differential equations of vector quantities which, 
for general boundary conditions, are extremely difficult to solve without the aid 
of a powerful computer.  A simpler approach is to artificially decouple the 
electric and magnetic field vector components and describe light as a scalar 
quantity.  Under most conditions scalar diffraction theory is surprisingly 
accurate.   
 
 Scalar diffraction theory was first rigorously used by Kirchoff in 1882, 
and involves performing one numerical integration (much simpler than solving 
partial differential equations!).  Kirchoff diffraction was further simplified by 
Fresnel for the case when the distance away from the diffracting plane (that is, 
the distance from the mask to the objective lens) is much greater than the 
wavelength of light.  Finally, if the distance to the objective lens is very large, or 
if the mask is illuminated by a spherical wave which converges to a point at the 
entrance to the objective lens, Fresnel diffraction simplifies to Fraunhofer 
diffraction.  Comparison of these different diffraction regions is given in Figure 
2-2. 
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Light Source

Condenser Lens

Mask

Objective Lens

Wafer  Figure 2-1. Block diagram of a generic projection system.  
 
 
 
 In order to establish a mathematical description of diffraction by a mask, 
let us describe the electric field transmittance of a mask pattern as m(x,y), where 
the mask is in the x,y-plane and m(x,y) has in general both magnitude and phase.  
For a simple chrome-glass mask, the mask pattern becomes binary:  m(x,y) is 1 
under the glass and 0 under the chrome.  Let the x',y'-plane be the diffraction 
plane, that is, the entrance to the objective lens, and let z be the distance from the 
mask to the objective lens.  Finally, we will assume monochromatic light of 
wavelength  and that the entire system is in air (so that its index of refraction 
can be dropped).  Then, the electric field of our diffraction pattern, E(x',y'), is 
given by the Fraunhofer diffraction integral: 
 
 E x y m x y dx dyi f x f yx ye( ) ( ) (  , , )  







 2  (2.6) 
 
where fx = x'/(z and fy = y'/(z and are called the spatial frequencies of the 
diffraction pattern. 
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Figure 2-2. Comparison of the diffraction “regions” where various 

approximations become accurate.  Diffraction is for a slit of width w 
illuminated by light of wavelength , and z is the distance away from 
the mask.    

 
 
 For many scientists and engineers (and especially electrical engineers), 
this equation should be quite familiar:  it is simply a Fourier transform.  Thus, 
the diffraction pattern (i.e., the electric field distribution as it enters the objective 
lens) is just the Fourier transform of the mask pattern.  This is the principle 
behind an entire field of science called Fourier Optics (for more information, 
consult Goodman's classic textbook [2.1]). 
 
 Figure 2-3 shows two mask patterns, one an isolated space, the other a 
series of equal lines and spaces, both infinitely long in the y-direction (the 
direction out of the page).  The resulting mask pattern functions, m(x), look like 
a square pulse and a square wave, respectively.  The Fourier transforms are 
easily found in tables or textbooks and are also shown in Figure 2-3.  The 
isolated space gives rise to a sinc function diffraction pattern, and the equal lines 
and spaces yield discrete diffraction orders.   
 
 E x wf

fisolated space x
x

( )  sin( )
   
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 E x wf
f f n

pdense space x
xn

x( ) 





 sin( )
   (2.7) 

 
where  is the Dirac delta function. 
 
 
 
 

fx00

mask

m(x) 01

E(x’)
 

 (a) (b) 
Figure 2-3. Two typical mask patterns, an isolated space and an array of equal 

lines and spaces, and the resulting Fraunhofer diffraction patterns 
assuming normally incident plane wave illumination.  

 
 
 Let’s take a closer look at the diffraction pattern for equal lines and 
spaces.  Notice that the graphs of the diffraction patterns in Figure 2-3 use 
spatial frequency as its x-axis.  Since z and  are fixed for a given optical system, 
the spatial frequency is simply a scaled x'-coordinate.  At the center of the 
objective lens entrance (fx = 0) the diffraction pattern has a bright spot called the 
zero order.  The zero order is the light which passes through the mask and is not 
diffracted.  The zero order can be thought of as “D.C.” light, providing power 
but no information as to the size of the features on the mask.  To either side of 
the zero order are two peaks called the first diffraction orders.  These peaks 
occur at spatial frequencies of ±1/p where p is the pitch of the mask pattern 
(linewidth plus spacewidth).  Since the position of these diffraction orders 
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depends on the mask pitch, their position contains information about the pitch.  
It is this information that the objective lens will use to reproduce the image of 
the mask.  In fact, in order for the objective lens to form a true image of the 
mask it must have the zero order and at least one higher order.  In addition to the 
first order, there can be many higher orders, with the nth order occurring at a 
spatial frequency of n/p.   
 
 Summarizing, given a mask in the x-y plane described by its electric 
field transmission m(x,y), the electric field M as it enters the objective lens (the 
x'-y' plane) is given by 
 
 M(fx, fy)  =  F {m(x,y)} (2.8) 
 
where the symbol F  represents the Fourier transform and fx and fy are the 
spatial frequencies and are simply scaled coordinates in the x'-y' plane. 
 
 We are now ready to describe what happens next and follow the 
diffracted light as it enters the objective lens.  In general, the diffraction pattern 
extends throughout the x'-y' plane.  However, the objective lens, being only of 
finite size, cannot collect all of the light in the diffraction pattern.  Typically, 
lenses used in microlithography are circularly symmetric and the entrance to the 
objective lens can be thought of as a circular aperture.  Only those portions of 
the mask diffraction pattern which fall inside the aperture of the objective lens 
go on to form the image.  Of course we can describe the size of the lens aperture 
by its radius, but a more common and useful description is to define the 
maximum angle of diffracted light which can enter the lens.  Consider the 
geometry shown in Figure 2-4.  Light passing through the mask is diffracted at 
various angles.  Given a lens of a certain size placed a certain distance from the 
mask, there is some maximum angle of diffraction, , for which diffracted light 
just makes it into the lens.  Light emerging from the mask at larger angles misses 
the lens and is not used in forming the image.  The most convenient way to 
describe the size of the lens aperture is by its numerical aperture, defined as the 
sine of the maximum half-angle of diffracted light which can enter the lens times 
the index of refraction of the surrounding medium.  In the case of lithography, 
all of the lenses are in air and the numerical aperture is given by NA = sin.  
(Note that the spatial frequency is the sine of the diffracted angle divided by the 
wavelength of light.  Thus, the maximum spatial frequency which can enter the 
objective lens is given by NA/.) 
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

Mask

Objective Lens

Aperture   
Figure 2-4. The numerical aperture is defined as NA = sin where  is the 

maximum half-angle of the diffracted light which can enter the 
objective lens (the lens and mask are in air).  

 
 
 
 
 Obviously, the numerical aperture is going to be quite important.  A 
large numerical aperture means that a larger portion of the diffraction pattern is 
captured by the objective lens.  For a small numerical aperture, much more of 
the diffracted light is lost.  In fact, we can use this viewpoint to define 
resolution, at least from the limited perspective of image formation.  Consider 
the simple case of a mask pattern of equal lines and spaces.  As we have seen, 
the resulting diffraction pattern is a series of discrete diffraction orders.  In order 
to produce an image which even remotely resembles the original mask pattern it 
is necessary for the objective lens to capture the zero order (i.e., the undiffracted 
light) and at least one higher diffraction order.  If the light illuminating the mask 
is a normally incident plane wave, the diffraction pattern will be centered in the 
objective lens.  Since the position of the 1 diffraction orders are given by /p 
where p is the pitch of the mask pattern, the requirement that a lens of a finite 
size must capture these diffraction orders to form an image puts a lower limit on 
the pitch which can be imaged.  Thus, the smallest pitch (pmin) which still 
produces an image would put the first diffraction order at the outer edge of the 
objective lens.  Thus, 
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 1

p
NA

min
   (2.9) 

 
If we let R represent the resolution element (the linewidth or the spacewidth) of 
our equal line/space pattern, the resolution will be given by 
 
 R NA 0 5.   (2.10) 
 
This classic equation is often called the theoretical resolution of an imaging 
system.  Note that several very specific assumptions were made in deriving this 
resolution equation:  a mask pattern of equal lines and spaces was used, and the 
illumination was a single wavelength normally incident plane wave (called 
coherent illumination).  For other features, for example an isolated line, there is 
no clear resolution cut-off.  For other types of illumination, this cut-off will 
change. 
 
 To proceed further, we must now describe how the lens affects the light 
entering it.  Obviously, we would like the image to resemble the mask pattern.  
Since diffraction gives the Fourier transform of the mask, if the lens could give 
the inverse Fourier transform of the diffraction pattern, the resulting image 
would resemble the mask pattern.  In fact, spherical lenses do behave precisely 
in this way.  We can define an ideal imaging lens as one which produces an 
image which is identically equal to the inverse Fourier transform of the light 
distribution entering the lens.  It is the goal of lens designers and manufacturers 
to create lenses as close as possible to this ideal.  Does an ideal lens produce a 
perfect image?  No.  Because of the finite size of the numerical aperture, only a 
portion of the diffraction pattern enters the lens.  Thus, even an ideal lens cannot 
produce a perfect image unless the lens is infinitely big.  Since in the case of an 
ideal lens the image is limited only by the diffracted light which does not make it 
through the lens, we call such an ideal system diffraction limited. 
 
 In order to write our final equation for the formation of an image, let us 
define the objective lens pupil function P (a pupil is just another name for an 
aperture).  The pupil function of an ideal lens simply describes what portion of 
light enters the lens:  it is one inside the aperture and zero outside: 
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 P f f f f NA

f f NAx y
x y
x y

( , ) , /
, /  

 


1
0

2 2
2 2


  (2.11) 

 
Thus, the product of the pupil function and the diffraction pattern describes the 
light entering the objective lens.  Combining this with our description of how a 
lens behaves gives us our final expression for the electric field at the image 
plane (that is, at the wafer): 
 
 E(x,y)  =  F  -1{M(fx, fy)P(fx, fy)} (2.12) 
 
where the symbol F  -1 represents the inverse Fourier transform. 
 
The aerial image is defined as the intensity distribution at the wafer and is 
simply the square of the magnitude of the electric field. 
 
 Consider the full imaging process.  First, light passing through the mask 
is diffracted.  The diffraction pattern can be described as the Fourier transform 
of the mask pattern.  Since the objective lens is of finite size, only a portion of 
the diffraction pattern actually enters the lens.  The numerical aperture describes 
the maximum angle of diffracted light which enters the lens and the pupil 
function is used to mathematically describe this behavior.  Finally, the effect of 
the lens is to take the inverse Fourier transform of the light entering the lens to 
give an image which resembles the mask pattern.  If the lens is ideal, the quality 
of the resulting image is only limited by how much of the diffraction pattern is 
collected.  This type of imaging system is called diffraction limited. 
 
 Although we have completely described the behavior of a simple ideal 
imaging system, we must add one more complication before we have described 
the operation of a projection system for lithography.  So far, we have assumed 
that the mask is illuminated by spatially coherent light.  Coherent illumination 
means simply that the light striking the mask arrives from only one direction.  
We have further assumed that the coherent illumination on the mask is normally 
incident.  The result was a diffraction pattern which was centered in the entrance 
to the objective lens.  What would happen if we changed the direction of the 
illumination so that the light struck the mask at some angle ’?  The effect is 
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simply to shift the position of the diffraction pattern with respect to the lens 
aperture (in terms of spatial frequency, the amount shifted is sin’/), as seen in 
Figure 2-5.  Recalling that only the portion of the diffraction pattern passing 
through the lens aperture is used to form the image, it is quite apparent that this 
shift in the position of the diffraction pattern can have a profound effect on the 
resulting image.  Letting fx’ and fy’ be the shift in the spatial frequency due to 
the tilted illumination, equation (2.12) becomes 
 
 E(x, y, fx’, fy’)  =  F  -1 {M(fx- fx’, fy- fy’)P(fx, fy)} 
 
 I(x, y, fx’, fy’)  =  |E(x, y, fx’, fy’)|2 (2.13) 
 
 
 
 

Mask Pattern(equal lines and spaces)

Diffraction Pattern

Lens Aperture   
Figure 2-5. The effect of changing the angle of incidence of plane wave 

illumination on the diffraction pattern is simply to shift its position in 
the lens aperture.  

 
 
 
 If the illumination of the mask is composed of light coming from a range 
of angles rather than just one angle, the illumination is called partially coherent.  
If one angle of illumination causes a shift in the diffraction pattern, a range of 
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angles will cause a range of shifts, resulting in broadened diffraction orders 
(Figure 2-6).  One can characterize the range of angles used for the illumination 
in several ways, but the most common is the partial coherence factor,  (also 
called the degree of partial coherence, or the pupil filling function, or just the 
partial coherence).  The partial coherence is defined as the sine of the half-angle 
of the illumination cone divided by the objective lens numerical aperture.  It is 
thus a measure of the angular range of the illumination relative to the angular 
acceptance of the lens.  Finally, if the range of angles striking the mask extends 
from -90 to 90 (that is, all possible angles), the illumination is said to be 
incoherent.  Table I helps define the terminology of spatial coherence. 
 
 
 
 
 
 

Mask Pattern
(equal lines and spaces)

Diffraction Pattern

Lens Aperture   
 
Figure 2-6. The diffraction pattern is broadened by the use of partially coherent 

illumination (plane waves over a range of angles striking the mask).  
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 PROLITH/2 uses the extended source method for partially coherent 
image calculations.  In this method, the full source is divided into individual 
point sources.  Each point source is coherent and results in an aerial image given 
by equation (2.13).  Two point sources from the extended source, however, do 
not interact coherently with each other.  Thus, the contributions of these two 
sources must be added to each other incoherently (that is, the intensities are 
added together).  The full aerial image is determined by calculating the coherent 
aerial image from each point on the source, and then integrating the intensity 
over the source.  The source can be defined by a source function, S(fx’, fy’), 
which is just the intensity of the source as a function of position (or angle).  The 
total intensity of the image is then 
 

 I x y
I x y f f S f f df df

S f f df dftotal
x y x y

source
x y

x y
source

x y
( , )

( , , ' , ' ) ( ' , ' ) ' '
( ' , ' ) ' ' 

  (2.14) 

 
 
 
 
 
 
 
Table I.  Partial coherence types 
 

Illumination Type Partial Coherence 
Factor 

Source Shape 

Coherent  = 0 point source 
Incoherent  =  infinite size source 

Partially Coherent 0 <  <  disk shaped source 
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C.  Aberrations and Pupil Filters 
 
 Aberrations can be defined as the deviation of the real behavior of an 
imaging system from its ideal behavior (the ideal behavior was described above 
using Fourier optics as diffraction limited imaging).  Aberrations are inherent in 
the behavior of all lens systems and come from three basic sources:  defects of 
construction, defects of use, and defects of design.  Defects of construction 
include rough or inaccurate lens surfaces, inhomogeneous glass, incorrect lens 
thicknesses or spacings, and tilted or decentered lens elements.  Defects of use 
include use of the wrong illumination or tilt of the lens system with respect to 
the optical axis of the imaging system.  Also, changes in the environmental 
conditions during use, such as the temperature of the lens or the barometric 
pressure of the air, result in defects of use.  Defects of design may be a bit of a 
misnomer, since the aberrations of a lens design are not mistakenly designed into 
the lens, but rather were not designed out of the lens.  All lenses have aberrated 
behavior since the Fourier optics behavior of a lens is only approximately true 
and is based on a linearized Snell’s law for small angles.  It is the job of a lens 
designer to combine elements of different shapes and properties so that the 
aberrations of each individual lens element tends to cancel in the sum of all of 
the elements, giving a lens system with only a small residual amount of 
aberrations.  It is impossible to design a lens system with absolutely no 
aberrations. 
 
 Mathematically, aberrations are described as a wavefront deviation, the 
difference in phase (or path difference) of the actual wavefront emerging from 
the lens compared to the ideal wavefront as predicted from Fourier optics.  This 
phase difference is a function of the position within the lens pupil, most 
conveniently described in polar coordinates.  This wavefront deviation is in 
general quite complicated, so the mathematical form used to describe it is also 
quite complicated.  The most common model for describing the phase error 
across the pupil is the Zernike polynomial, an infinite polynomial series, usually 
cut off at 36 terms, with powers of the radial pupil position R and trigonometric 
functions of the polar angle .  The Zernike polynomial can be arranged in many 
ways, but most lens design software and lens measuring equipment in use today 
employ the fringe or circle Zernike polynomial, defined below: 
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W(R,)  = Z1*R*cos 
 + Z2*R*sin 
 + Z3*(2*R*R-1) 
 + Z4*R*R*cos2 
 + Z5*R*R*sin2 
 + Z6*(3*R*R-2)*R*cos 
 + Z7*(3*R*R-2)*R*sin 
 + Z8*(6*R**4-6*R*R+1) 
 + Z9*R**3*cos3 
 + Z10*R**3*sin3 
 + Z11*(4*R*R-3)*R*R*cos2 
 + Z12*(4*R*R-3)*R*R*sin2 
 + Z13*(10*R**4-12*R*R+3)*R*cos 
 + Z14*(10*R**4-12*R*R+3)*R*sin 
 + Z15*(20*R**6-30*R**4+12*R*R-1) 
 + Z16*R**4*cos4 
 + Z17*R**4*sin4 
 + Z18*(5*R*R-4)*R**3*cos3 
 + Z19*(5*R*R-4)*R**3*sin3 
 + Z20*(15*R**4-20*R*R+6)*R*R*cos2 
 + Z21*(15*R**4-20*R*R+6)*R*R*sin2 
 + Z22*(35*R**6-60*R**4+30*R*R-4)*R*cos 
 + Z23*(35*R**6-60*R**4+30*R*R-4)*R*sin 
 + Z24*(70*R**8-140*R**6+90*R**4-20*R*R+1) 
 + Z25*R**5*cos5 
 + Z26*R**5*sin5 
 + Z27*(6*R*R-5)*R**4*cos4 
 + Z28*(6*R*R-5)*R**4*sin4 
 + Z29*(21*R**4-30*R*R+10)*R**3*cos3 
 + Z30*(21*R**4-30*R*R+10)*R**3*sin3 
 + Z31*(56*R**6-105*R**4+60*R**2-10)*R*R*cos2 
 + Z32*(56*R**6-105*R**4+60*R**2-10)*R*R*sin2 
 + Z33*(126*R**8-280*R**6+210*R**4-60*R*R+5)*R*cos 
 + Z34*(126*R**8-280*R**6+210*R**4-60*R*R+5)*R*sin 
 + Z35*(252*R**10-630*R**8+560*R**6-210*R**4+30*R*R-1) 
 + Z36*(924*R**12-2772*R**10+3150*R**8-1680*R**6+420*R**4-

42*R*R+1) (2.15) 
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where W(R,) is the optical path difference relative to the wavelength and Zi is 
called the ith Zernike coefficient.  It is the magnitude of the Zernike coefficients 
that determine the aberration behavior of a lens.  They have units of optical path 
length relative to the wavelength.  (Note that different notational schemes are in 
use for the Zernike coefficients.  Another popular scheme includes a constant 
offset as the first term, then calls the rest of the coefficients Z2 - Z37.  
Unfortunately, there is no universal standard and naming conventions can vary.) 
 
 The impact of aberrations on the aerial image can be calculated by 
modifying the pupil function of the lens to include the aberration phase error 
given by equation (2.15). 
 
 P f f P f f ex y ideal x y i W R( , ) ( , ) ( , ) 2   (2.16) 
 
Figure 2-7 shows several examples of plots of W(R,) for different simple 
aberrations. 
 
 Pupil filters are special filters placed inside the objective lens in order to 
purposely modify the pupil function P(fx, fy).  In general, the ideal pupil function 
will provide the best overall imaging capabilities.  However, under special 
circumstances (for example, when imaging one specific mask pattern), a change 
in the pupil function may result in desirable imaging properties such as enhanced 
depth of focus.  The pupil filter function F(fx, fy) can have both a variation in 
transmission (T) and phase () across the pupil. 
 
 F f f T f f ex y x y

i f fx y( , ) ( , ) ( , )   (2.17) 
 
The final pupil function is then the pupil function given by equation (2.16) 
multiplied by the filter function given in equation (2.17). 
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put Figure 2-7 here 
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D.  Defocus 
 
 Previous expressions for calculating the aerial image (such as equation 
2.12) apply only to the image at the focal plane.  What happens when the 
imaging system is out of focus?  What is the image intensity distribution some 
small distance away from the plane of best focus?  The impact of focus errors on 
the resulting aerial image can be described as an aberration of a sort.  Consider a 
perfect spherical wave converging (i.e., focusing) down to a point.  An ideal 
projection system would create such a wave coming out of the lens aperture 
(called the exit pupil), as shown in Figure 2-8a.  If the wafer to be printed were 
placed in the same plane as the focal point of this wave, we would say that the 
wafer was in focus.  What happens if the wafer were removed from this plane by 
some distance , called the defocus distance?  Figure 2-8b shows such a 
situation.  The spherical wave with the solid line represents the actual wave 
focused to a point a distance  away from the wafer.  If, however, the wave had a 
different shape, as given by the dotted curve, then the wafer would be in focus.  
Note that the only difference between these two different waves is the radius of 
curvature.  Since the dotted curve is the wavefront we want for the given wafer 
position, we can say that the actual wavefront is in error because it does not 
focus where the wafer is located.  (This is just a variation of “the customer is 
always right” attitude -- the wafer is always right, it is the optical wavefront that 
is out of focus.) 
 
 By viewing the actual wavefront as having an error in curvature relative 
to the desired wavefront (i.e., the one that focuses on the wafer), we can quantify 
the effect of defocus.  Looking at Figure 2-8b, it is apparent that the distance 
from the desired to the “defocused” wavefront goes from zero at the center of the 
exit pupil and increases as we approach the edge of the pupil.  This distance 
between wavefronts is called the optical path difference (OPD).  The OPD is a 
function of the defocus distance and the position within the pupil and can be 
obtained from the geometry shown in Figure 2-9.  Describing the position within 
the exit pupil by an angle , the optical path difference (assuming R >> ) is 
given by 
 
 OPD   ( cos )1  (2.18) 
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Exit Pupil

(a) (b)

WaferWafer



  
Figure 2-8. Focusing of light can be thought of as a converging spherical wave:  

a) in focus, and b) out of focus by a distance .  
 
 
As we have seen before, the spatial frequency and the numerical aperture define 
positions within the pupil as the sine of an angle.  Thus, the above expression for 
optical path difference would be more useful if expressed as a function of sin : 
 
 OPD      



        ( cos ) sin sin sin sin1 4 8

12 122 4 6 2  (2.19) 
 
where the final approximation is accurate only for relatively small angles.  
Figure 2-10 describes the accuracy of this approximation as a function of the 
angle . 
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

OPD



R

  
Figure 2-9.  Geometry relating the optical path difference (OPD) to the defocus 

distance , the angle , and the radius of curvature of the 
converging wave R.  

 
 
 
 
 So how does this optical path difference affect the formation of an 
image?  The OPD acts just like an aberration, modifying the pupil function of 
the lens.  For light, this path length traveled (the OPD) is equivalent to a change 
in phase.  Thus, the OPD can be expressed as a phase error, ,  due to defocus: 
 
          k OPD 2 1 2( cos ) / sin /  (2.20) 
 
where k = 2/ = the propagation constant in air and, again, the final 
approximation is only valid for small angles.  We are now ready to see how 
defocus affects the diffraction pattern and the resulting image.  Our 
interpretation of defocus is that it causes a phase error as a function of radial 
position within the aperture.  Light in the center of the aperture has no error, 
light at the edge of the aperture has the greatest phase error.  This is very 
important when we remember what a diffraction pattern looks like as it enters 



Inside PROLITH 28

the lens aperture.  Figure 2-3b shows such a diffraction pattern for the simple 
case of equal lines and spaces.  Recall that diffraction by periodic patterns 
results in discrete diffraction orders:  the zero order is the undiffracted light 
passing through the center of the lens, higher orders contain information 
necessary to reconstruct the image. Thus, the effect of defocus is to add a phase 
error to the higher order diffracted light relative to the zero order.  When the 
lens recombines these orders to form an image, this phase error will result in a 
degraded image (Figure 2-11). 
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Figure 2-10. Comparison of the exact and approximate expressions for the 

defocus optical path difference (OPD) shows an increasing error as 
the angle increases. An angle of 30° (corresponding to the edge of 
an NA = 0.5 lens) shows an error of 6.7% for the approximate 
expression, while an angle of 37° (not shown, but corresponding to 
the edge of an NA = 0.6 lens) gives an error of 10%.  
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Horizontal Position   
Figure 2-11. Aerial image intensity of a 0.8 /NA line and space pattern as focus 

is changed.  
 
 
 
E.  Image Calculation Modes 
 
 Calculation of an aerial image means, quite literally, determination of 
the image in air.  Of course, in lithography one projects this image into 
photoresist.  The propagation of the image into resist can be quite complicated, 
so models usually make one or more approximations.  This section describes 
approximations that can be made in determining the intensity of light within the 
photoresist. 
 

1.  Zero Order Scalar Model 
 
 The lithography simulator SAMPLE [2.2] and the 1985 version of 
PROLITH [2.3] used the simple imaging approximation first proposed by Dill 
[2.4] to calculate the propagation of an aerial image in photoresist.  First, an 
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aerial image Ii(x) is calculated as if projected into air (x being along the surface 
of the wafer and perpendicular to the propagation direction of the image).  
Second, a standing wave intensity Is(z) is calculated assuming a plane wave of 
light is normally incident on the photoresist coated substrate (where z is defined 
as zero at the top of the resist and is positive going into the resist).  Then, it is 
assumed that the actual intensity within the resist film I(x,z) can be approximated 
by 
 
 I x z I x I zi s( , ) ( ) ( )  (2.21) 
 
For very low numerical apertures and reasonably thin photoresists, these 
approximations are valid.  They begin to fail when the aerial image changes as it 
propagates through the resist (i.e., it defocuses) or when the light entering the 
resist is appreciably non-normal.  Note that if the photoresist bleaches (changes 
its optical properties during exposure), only Is(z) changes in this approximation.  
The zero order scalar model is not used in PROLITH/2. 
 

2.  Standard Model of PROLITH/2 
 
 The first attempt to correct one of the deficiencies of the zero order 
model was made by the author [2.5] and, independently, by Bernard [2.6].  The 
aerial image, while propagating through the resist, is continuously changing 
focus.  Thus, even in air, the aerial image is a function of both x and z.  An aerial 
image simulator calculates images as a function of x and the distance from the 
plane of best focus, .  Letting o be the defocus distance of the image at the top 
of the photoresist, the defocus within the photoresist at any position z is given by 
 
  ( )z z

no   (2.22) 
 
where n is the real part of the index of refraction of the photoresist.  The 
intensity within the resist is then given by 
 
 I x z I x z I zi s( , ) ( , ( )) ( )   (2.23) 
 
Here the assumption of normally incident plane waves is still used when 
calculating the standing wave intensity.  This approximate form of the scalar 
model is known as the “Standard Model” in PROLITH/2.  The standard model 
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also uses the approximate form of the defocus expression, as found in equation 
(2.19). 
 

3.  High NA Scalar Model in PROLITH/2 
 
 The light propagating through the resist can be thought of as various 
plane waves traveling through the resist in different directions.  Consider first 
the propagation of the light in the absence of diffraction by a mask pattern (that 
is, exposure of the resist over a large open area).  The spatial dimensions of the 
light source determine the characteristics of the light entering the photoresist.  
For the simple case of a coherent point source of illumination centered on the 
optical axis, the light traveling into the photoresist would be the normally 
incident plane wave used in the calculations presented above.  The standing 
wave intensity within the resist can be determined analytically [2.7] as the 
square of the magnitude of the electric field given by 
 
  E z EI i z D i z

D

e e( )
/ /

 


  
  

   12 2 23 2 2

12 23 21
n n2 2

 (2.24) 
 
where the subscripts 1, 2, and 3 refer to air, the photoresist and the substrate, 
respectively, D is the resist thickness, EI is the incident electrical field,  is the 
wavelength, and where 
 
 
 complex index of refraction of film j: n j j jn i    
 transmission coefficient from i to j:  ij i

i j
 

2n
n n  

 reflection coefficient from i to j: ij
i j
i j

 


n n
n n  

 internal transmittance of the resist:   D i De  2 n2 /  
 
A more complete description of the standing wave equation (2.24) is given in 
Chapter 3. 
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 The above expression can be easily modified for the case of non-
normally incident plane waves.  Suppose a plane wave is incident on the resist 
film at some angle 1.  The angle of the plane wave inside the resist will be 2 as 
determined from Snell’s law.  An analysis of the propagation of this plane wave 
within the resist will give an expression similar to equation (2.24) but with the 
position z replaced with zcos2.  
  E z EI i z D i z

D

e e( , ) ( ) ( ) ( )
( ) ( ) ( )

cos / cos /
      

     
     

2
12 2 2 23 2 2 2 2

12 2 23 2 2 2

2 2

1 


 n n2 2
 (2.25) 

 
The transmission and reflection coefficients are now functions of the angle of 
incidence and are given by the Fresnel formulas (see Chapter 3).  A similar 
approach was taken by Bernard and Urbach [2.8]. 
 
 By calculating the standing wave intensity at one incident angle 1 to 
give Is(z,1), the full standing wave intensity can be determined by integrating 
over all angles.  Each incident angle comes from a given point in the 
illumination source, so that integration over angles is the same as integration 
over the source.  Thus, the effect of partial coherence on the standing waves is 
accounted for (see Figure 2-12).  Note that for the model described here the 
effect of the non-normal incidence is included only with respect to the zero order 
light (the light which is not diffracted by the mask).  This form of the scalar 
imaging problem is known as the “High NA Scalar” model in PROLITH/2.  The 
high NA scalar model uses the exact defocus expression. 
 
 Reduction (or magnification) in an imaging system adds an interesting 
complication.  Light entering the objective lens will leave the lens with no loss 
in energy (the lossless lens assumption).  However, if there is reduction or 
magnification in the lens, the intensity distribution of the light entering will be 
different from that leaving since the intensity is the energy spread over a 
changing area.  The result is a radiometric correction well known in optics [2.9] 
and first applied to lithography by Cole and Barouch [2.10].  The amplitude of 
the electric field passing through the pupil at angle  is modified by the 
radiometric correction 
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 Radiometric Correction R 












1
1

2
2
2

0 25sin
sin

.
  (2.26) 

 
where R is the reduction factor (for example, 5.0 for a 5X reduction stepper).  In 
PROLITH/2, the radiometric correction is applied in the high NA scalar model 
but not in the standard model. 
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Figure 2-12. Calculation of the standing wave intensity for the high NA scalar 

model as a function of NA (with  = 0.7).  A numerical aperture 
equal to 0.4 is very close to the normally incident standing wave 
pattern, but an NA of 0.6 (corresponding to plane waves incident 
over a ±25° range) causes a significant decrease in the standing 
wave amplitude as well as an increase in the period. 
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4.  Full Scalar and Vector Models 

 
 The above methods for calculating the image intensity within the resist 
all make the assumption of separability, that an aerial image and a standing wave 
intensity can be calculated independently and then multiplied together to give 
the total intensity.  This assumption is not required.  Instead, one could calculate 
the full I(x,z) at once making only the standard scalar approximation.  The 
formation of the image can be described as the summation of plane waves.  For 
coherent illumination, each diffraction order gives one plane wave propagating 
into the resist.  Interference between the zero order and the higher orders 
produces the desired image.  Each point in the illumination source will produce 
another image which will add incoherently (i.e., intensities will add) to give the 
total image.  Equation (2.25) describes the propagation of a plane wave in a 
stratified media at any arbitrary angle.  By applying this equation to each 
diffraction order (not just the zero order as in the high NA scalar model), an 
exact scalar representation of the full intensity within the resist is obtained.  This 
model is called the Full Scalar model in PROLITH/2.  The Full Scalar model 
also makes use of the radiometric correction and uses the exact defocus 
expression. 
 
 Light is an electromagnetic wave which can be described by time-
varying electric and magnetic field vectors.  In lithography, the materials used 
are generally non-magnetic so that only the electric field is of interest.  The 
electric field vector is described by its three vector components (for example, x, 
y, and z components).  Maxwell’s equations, sometimes put into the form of the 
wave equation, govern the propagation of the electric field vector.  The scalar 
approximation assumes that each of the three components of the electric field 
vector can be treated as a single scalar quantity and that this scalar electric field 
must satisfy the wave equation.  Further, when two fields of light (say, two plane 
waves) are added together, the scalar approximation means that the sum of the 
fields would simply be the sum of the scalar amplitudes of the two fields. 
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Figure 2-13. Addition of two p-polarized plane waves depends on the angle 

between them.  
 
 
 The scalar approximation is commonly used throughout optics and is 
known to be accurate under many conditions.  There is one simple situation, 
however, in which the scalar approximation is not adequate.  Consider the 
interference of two plane waves traveling past each other.  If each plane wave is 
treated as a vector, they will interfere only if there is some overlap in their 
electric field vectors.  If the vectors are parallel, there will be complete 
interference.  If, however, their electric fields are at right angles to each other 
there will be no interference.  The scalar approximation essentially assumes that 
the electric field vectors are always parallel and will always give complete 
interference.  These differences come into play in lithography when considering 
the propagation of plane waves traveling through the resist at large angles 
(Figure 2-13).  For large angles, the scalar approximation may fail to account for 
these vector effects.  In particular, s-polarized light always results in complete 
overlap of the electric field vectors so that the full scalar approach gives the 
same result as a vector approach for s-polarized illumination.  However, p-
polarized illumination can give a very different result depending on the angle 
(i.e., on the size of the numerical aperture).  Thus, a vector model would keep 
track of the vector direction of the electric field and use this information when 
adding two plane waves together [2.11,2.12].  The vector option of PROLITH/2 
includes both the Full Scalar model and the Vector model as described above. 
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Chapter 3 
Standing Waves 

 
 
 When a thin dielectric film placed between two semi-infinite media 
(e.g., a thin coating on a thick substrate in air) is exposed to monochromatic 
light, standing waves are produced in the film.  This effect has been well 
documented for such cases as anti-reflection coatings and photoresist exposure 
[3.1]-[3.5].  In the former, the standing wave effect is used to reduce reflections 
from the substrate.  In the latter, standing waves are an undesirable side effect of 
the exposure process.  Unlike the anti-reflection application, photolithography 
applications require a knowledge of the intensity of the light within the thin film 
itself.  Early work [3.4], [3.5] on determining the intensity within a thin 
photoresist film has been limited to numerical solutions based on Berning’s 
matrix method [3.6].  This section presents an analytical expression for the 
standing wave intensity within a thin film [3.7].  This film may be homogeneous 
or of a known small inhomogeneity.  The film may be on a substrate or between 
one or more other thin films.  The incident light can be normally incident or 
incident at some angle. 
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A.  Normally Incident, Single Layer 
 
 Consider a thin film of thickness D and complex index of refraction n2 deposited on a thick substrate with complex index of refraction n3 in an ambient 
environment of index n1.  An electromagnetic plane wave is normally incident 
on this film.  Let E1, E2, and E3 be the electric fields in the ambient, thin film, 
and substrate, respectively (see Figure 3-1). Assuming monochromatic 
illumination by a normally incident plane wave, the electric field in each region 
is a plane wave or the sum of two plane waves traveling in opposite directions 
(i.e., a standing wave).  Maxwell’s equations require certain boundary conditions 
to be met at each interface: specifically, Ej and the magnetic field Hj are 
continuous across the boundaries z = 0 and z = D.  Solving the resulting 
equations simultaneously, the electric field in region 2 can be shown to be [3.7] 
 
  E x y z E x yI

i z D i z

D

e e
2

12 2 23 2 2

12 23 21( , , ) ( , )
/ /

 


  
  

   n n2 2
 (3.1) 

 
 
where EI(x,y)  =  the incident plane wave at z = 0, 
 
 ij  =  (ni - nj)/(ni + nj),  the reflection coefficient 
 
 ij  =  2ni/(ni + nj),  the transmission coefficient 
 
 D  =  exp(-ik2D),  the internal transmittance of the film 
 
 kj  =  2nj/,  the propagation constant  
 
  nj  =  nj - ij,  the complex index of refraction 
 
   =  vacuum wavelength of the incident light. 
 
Equation (3.1) is the basic standing wave expression where film 2 represents the 
photoresist.  Squaring the magnitude of the electric field gives the standing wave 
intensity.  Note that absorption is taken into account in this expression through 
the imaginary part of the index of refraction.  The common absorption 
coefficient  is related to the imaginary part of the index by 
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  
 4  (3.2) 
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Figure 3-1. Film stack showing the geometry for the standing wave derivation.  
 
 
 The derivation of equation (3.1) required an assumption about the sign 
convention for the phasor representation of a sinusoidal wave, as discussed in 
Chapter 2.  Unfortunately, the convention commonly used for thin film 
calculations is the opposite to that normally used for imaging.  Thus, for the 
purposes of this chapter, a plane wave traveling in the +z-direction would be 
represented by exp(-ikz) and the imaginary part of the index of refraction must 
be negative to represent an absorbing media. 
 
B.  Multiple Layers 
 
 It is very common to have more than one film coated on a substrate.  The 
problem then becomes that of two or more absorbing thin films on a substrate.  
An analysis similar to that for one film yields the following result for the electric 
field in the top layer of an  m-1 layer system: 
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where 
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and all other parameters are defined previously.  The parameter '23 is the 
effective reflection coefficient between the thin resist film and what lies beneath 
it. 
 
 If the thin film in question is not the top film (layer 2), the intensity can 
be calculated in layer j from 
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where  *j-1,j  =  1 + *j-1,j.  The effective reflection coefficient * is analogous to 
the coefficient ',  looking in the opposite direction.  EIeff is the effective 
intensity incident on layer j.  Both EIeff and * are defined in detail in Reference 
3.7. 
 
 If the film in question is not homogeneous the equations above are, in 
general, not valid.  Let us, however, examine one special case in which the 
inhomogeneity takes the form of small variations in the imaginary part of the 
index of refraction of the film in the z-direction, leaving the real part constant.  
In this case, the absorbance Abs is no longer simply z,  but becomes 
 
 Abs z z dz

z
( ) ( )  

0
 (3.5) 
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Figure 3-2. Standing wave intensity within a photoresist film at the start of 

exposure (850nm of resist on 100nm SiO2 on silicon,  = 436nm).  
The intensity shown is relative to the incident intensity. 
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It can be shown that equations (3.1) - (3.4) are still valid if the anisotropic 
expression for absorbance (3.5) is used.  Thus, I(z) can be found if the 
absorption coefficient is known as a function of z.  Figure 3-2 shows a typical 
result of the standing wave intensity within a photoresist film coated on an oxide 
on silicon film stack. 
 
C.  Oblique Incidence 
 
 The equation (3.1) can be easily modified for the case of non-normally 
incident plane waves.  Suppose a plane wave is incident on the resist film at 
some angle 1.  The angle of the plane wave inside the resist will be 2 as 
determined from Snell’s law (n1sin1 = n2sin2).  An analysis of the propagation 
of this plane wave within the resist will give an expression similar to equation 
(3.1) but with the position z replaced with zcos2.  
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The transmission and reflection coefficients are now functions of the angle of 
incidence (as well as the polarization of the incident light) and are given by the 
Fresnel formulas. 
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Here, ||  represents an electric field vector which lies in a plane defined by the 
direction of the incident light and a normal to the resist surface.  Other names for 
||  polarization include p polarization and TM (transverse magnetic) polarization.  
The polarization denoted by  represents an electric field vector which lies in a 
plane perpendicular to that defined by the direction of the incident light and a 
normal to the resist surface.  Other names for  polarization include s 
polarization and TE (transverse electric) polarization.  Note that for light 
normally incident on the resist surface, both s and p polarization result in electric 
fields which lie along the resist surface and the four Fresnel formulae revert to 
the two standard definitions of reflection and transmission coefficients used 
earlier.  Figure 3-3 shows how the reflectivity (the square of the magnitude of 
the reflection coefficient) varies with incident angle for both s and p polarized 
illumination. 
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Figure 3-3. Reflectivity (square of the reflection coefficient) as a function of the 

angle of incidence showing the difference between s and p 
polarization (n1 = 1.0, n2 = 1.7). 
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D.  Broadband Illumination 
 
 The analysis presented above applies to monochromatic illumination.  
What if broadband (polychromatic) illumination were used?  In general, the use 
of broadband illumination in imaging applications can be thought of as the 
incoherent superposition of individual monochromatic results.  Thus, the 
standing wave intensity for a single wavelength is integrated over the 
wavelengths of the source, weighted by the source illumination spectrum.  
Figure 3-4 shows a typical mercury arc lamp output spectrum (before filtering in 
the illumination system of the projection tool). 
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 Figure 3-4. Spectral output of a typical high-pressure mercury arc lamp.  The 
illumination spectrum of a lithographic exposure tool is usually a 
filtered portion of this lamp spectrum.  



Inside PROLITH 46

 Although wavelength appears explicitly in the expressions for the 
standing wave electric field in the resist, an implicit dependence occurs in the 
indices of refraction of the various resist and substrate materials.  The variation 
of the index of refraction of a material with wavelength, called dispersion, is 
extremely material dependent.  Over a limited range of wavelengths, many 
materials’ dispersion curves can be adequately described by an empirical 
expression called the Cauchy equation. 
 
 n C C C( )    1 22 34  (3.8) 
 
where C1, C2, and C3 are the empirically derived Cauchy coefficients.  It is 
important to note that any Cauchy fit to refractive index data will be valid only 
over the wavelength range of the data and should not be extrapolated. 
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Chapter 4 
Diffraction for Contact and 

Proximity Printing 
 
 
 The phenomenon of diffraction has been extensively studied and is well 
documented in the literature (e.g., ref. [4.1]).  However, rigorous treatments of 
the problem are prohibitively complicated and, thus, practical solutions make 
one or more simplifying approximations or assumptions.  The most common 
practical treatment of diffraction is that given by Kirchhoff and is outlined in 
some detail below.  As with any approximate solution, Kirchhoff’s diffraction 
theory is appropriate only under certain conditions, and this region of validity 
must be determined.  Of course, theory is more useful if it can be applied to 
realistic situations.  Thus, a method for applying Kirchhoff’s theory to 
heterogeneous media (in particular those media appropriate to contact and 
proximity printing) will be given. 
 
A.  Kirchhoff’s Diffraction Theory 
 
 The goal of any diffraction theory is to predict the intensity of light that 
has passed by some object or through some aperture.  For the case of contact 
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printing, this means predicting the intensity of light within a photoresist film 
after it has passed through an aperture called the mask.  As an example,  Figure 
4-1 shows the geometry for the case of a narrow slit of width w and length l in 
the xs-ys plane.  An electric field UI is incident on the aperture giving rise to an 
electric field U(P) at point P.  Thus, the goal of diffraction theory is to determine 
U(P) for a given aperture and incident wave. 
 
 Kirchhoff’s diffraction theory is, in effect, a mathematically rigorous 
version of Huygens’ principle, which states that any wavefront propagating 
through a medium can be thought of as a series of point sources, each producing 
its own spherical wavefront which, when superimposed, generates the new 
wavefront.  From a different perspective, the electric field at some point P 
resulting from some arbitrary wavefront S is the superposition of the electric 
field at P due to each of an infinite number of point sources along S. 
 
 
 

ys

xs

z

UI

P

  
Figure 4-1. Diffraction by a slit. 
 
 
 
 To prove the above statement, Kirchhoff indirectly solved the 
homogeneous wave equation at P under certain conditions.  Consider a 
monochromatic scalar wave of the form 
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 V x y z t U x y z e i t( , , , ) ( , , )    (4.1) 
 
where U is the phasor representation of the wave (see Chapter 2, equation 2.4).  
The time independent homogeneous wave equation (also known as the 
Helmholtz equation) states that 
    2 2 0k U x y z( , , )  (4.2) 

where  k  =  2n/, the propagation constant of the medium, 
 n  =  index of refraction of the medium, and 
   =  vacuum wavelength of the radiation. 
 
The Helmholtz equation is a direct result of Maxwell’s equations for any 
electromagnetic wave in a homogeneous medium in the absence of sources.  
There are infinitely many solutions to this equation, including the plane wave 
and the spherical wave. 
 
 Consider some arbitrary point P completely enclosed by a surface S of 
volume V.  If U(x,y,z) is continuous and has continuous first and second 
derivatives within and on the surface S, then Green’s theorem states 
 
 ( )U G G U dV U G

n G U
n dSSV        2 2 



  (4.3) 

 
where G(x,y,z) is any other function with the same continuity requirements as 
U(x,y,z) and n is the inward normal to S.  Further, let us pick G so that it satisfies 
the homogeneous wave equation (4.2).  Thus, 
 
         2 2 2 20 0k U G k U  
 
         2 2 2 20 0k G U k G  (4.4) 
 
which leads to 
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 U G G U   2 2 0  (4.5) 
 
Therefore, the left hand integral in equation (4.3) becomes zero and 
 
 U G

n G U
n dSS





   0  (4.6) 

 
 For reasons which will be made clear later, let us assume G has a 
singularity at P, for example 
 
 G e

s
iks   (4.7) 

 
where s is the distance from the point P to the point (x,y,z) on the surface S.  
Despite our initial assumption, G is not continuous in the volume V, having a 
singularity at P.  To remedy this problem we will define a different volume V* 
that excludes the point P, as shown in Figure 4-2.  The new surface is S + S’ 
where S’ is any surface contained in S which contains P.  The function G is 
continuous in the new volume and equation (4.6) becomes 
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n G U
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n G U
n dSS S





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



        0  (4.8) 
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Figure 4-2. Geometry used for the derivation of Kirchhoff’s integral. 
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Since S’ can be any surface, let us take it to be a small sphere of radius r.  
Substituting equation (4.7) into (4.8) and letting r go to zero, the right hand term 
in equation (4.8) becomes -4U(P).  The function U at the point P can be 
expressed as 
 
 U P U G

n G U
n dSS( )   1

4




  (4.9) 

 
Thus, U(P) may be determined if U is known everywhere on the surface S.  
Equation (4.9) is known as the Kirchhoff diffraction integral. 
 
 We will now apply the Kirchhoff diffraction integral to the problem of 
diffraction.  Consider an arbitrary wave UI incident on an opaque screen (in the 
xs-ys plane) with an aperture of arbitrary shape A (Figure 4-3).  To find the value 
of U a some point P to the right of the screen, we will pick S as pictured in 
Figure 4-3 and consider the three regions A just under the aperture, B under the 
opaque screen, and C a hemisphere of radius R, separately.  Letting R G ,  
and  G n/  become zero on C and this region contributes nothing to the 
integral.  To evaluate the integral (4.9) in regions A and B we must make some 
assumptions about U in these regions.  The standard “black screen” 
approximations are as follows: 
 
In region A: U = UI  
In region B: U = 0,  U n/  0  (4.10) 
 
Thus, region B does not contribute to the integral and equation (4.9) becomes 
 
 U P U G

n G U
n dSI I

A( )   1
4





  (4.11) 

 
If UI is known at the aperture, U(P) can be determined.  The boundary conditions 
(4.10) are called the “black screen” boundary conditions since an aperture in an 
infinitely absorbing black body would reproduce these conditions.  The accuracy 
of equation (4.11) is dependent on the applicability of these boundary conditions 
to the problem being studied.  Although the black screen boundary conditions 
allow for a simple solution to the Kirchhoff diffraction integral, they are less 
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than physically realizable since the result is a discontinuity of U on S.  Of 
course, other boundary conditions can be used but Kirchhoff’s theory provides 
no assistance in determining the most appropriate boundary conditions for a 
given problem.  The black screen boundary conditions will be used here with 
their effect on the accuracy of the results discussed later. 
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Figure 4-3. Diffraction by an opaque screen. 
 
 
 
B.  Plane Wave Slit Diffraction 
 
 As an example of the use of equation (4.11), consider the case of a 
uniform plane wave normally incident on a slit of width w and length l.  For such 
a case UI becomes 
 
 U E eI I ik z  1  (4.12) 
 
and the integral (4.11) becomes 
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Now, letting l go to infinity (an infinitely long slit), ys can be integrated out 
giving a multiplicative constant C. 
 
 U P C E G x P

z ik G x P dxI s s sw
w

( ) ( , ) ( , )  4 1
2

2


  (4.14) 
 
 For a slit in a homogeneous medium, Green’s function is the standard 
point source distribution of equation (4.7) where s is the distance from P to a 
point in the aperture xs.  In general, Green’s function can be thought of as the 
response of the medium to a point source located at P. 
 
C.  Diffraction In An Inhomogeneous Medium 
 
 Consider now an inhomogeneous medium, more specifically, one in 
which the dielectric constant  (and thus the index of refraction n) is a function 
of position.  Under these conditions, the wave equation becomes 
 
       2 2 0k U U( ln )  (4.15) 
 
Using this equation in place of the homogeneous wave equation (4.2) in the 
above analysis, however, does not prove fruitful.  A general diffraction integral 
of the form of equation (4.9) does not seem possible under these conditions. 
 
 Thus, we shall not solve the problem of an inhomogeneous medium in 
general, but will consider the special case of stratified media.  Consider a series 
of homogeneous layers of different materials all perpendicular to the z-direction 
and parallel to the plane of the aperture (Figure 4-4).  The point of interest will 
lie in the second layer.  The last layer, m + 1, is infinitely thick.  Consider now 
equation (4.6).  As was discussed, this equation will apply to any surface S 
which contains a homogeneous medium with no sources.  This condition can be 
met by picking an appropriate surface, such as S1 as shown in Figure 4-5.  The 
integral over S1 can be divided into four regions A, B, C, and D12.  By letting C 
be at infinity, it contributes nothing to the integral.  If we assume the standard 
boundary conditions for the aperture given in equation (4.10), equation (4.6) 
becomes 
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Figure 4-4. Diffraction in a multi-layer medium. 
 
 

+z  direction
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Figure 4-5. Surface S1 (dotted line) used to evaluate Kirchhoff’s 

diffraction integral. 
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 (4.16) 
 
 Consider a second surface S2 shown in Figure 4-6.  The application of 
equation (4.6) to this surface gives 
 
       U G

n G U
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
'2321
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Figure 4-6. Second surface used in Kirchhoff’s diffraction integral. 
 
 
 
To evaluate the integral over the surface S’, we must assume a form for G.  
Within S2 (i.e., within the second layer) let us assume that the Green’s function 
is defined by 
 



Diffraction for Contact and Proximity Printing 

 

57

 G e
s g P Qik s  2 ( , )  (4.18) 

 
 where Q  =  a point on S2,   s  =  distance from P to Q, and 
  k2  =  2n2/, the propagation constant in layer 2. 
 
Of course, g(P,Q) must be a solution of the wave equation, but we also assume it 
is continuous and has a continuous first derivative on and within S2.  Letting S’ 
be a sphere of radius r about the point P, and letting r go to zero, the integral on 
the  surface  S’  can  be  evaluated  as  was  done  previously,  yielding a value of 
-4U(P).  Thus, equation (4.17) becomes 
 
 U G

n G U
n dxdy U G

n G U
n dxdy U PD D











       21 23

4 ( )  (4.19) 
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Figure 4-7. Kirchhoff’s diffraction in the last layer. 
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Similarly, in region j (which does not contain the point P) we obtain 
 
 U G

n G U
n dxdy U G

n G U
n dxdyD Dj j j j











      , ,1 1

 (4.20) 
 
This method can be continued through each layer until the last layer is 
encountered.  In this region we pick Sm+1 to be a hemisphere of radius R as 
shown in Figure 4-7.  Letting R  ,  
 
 U G

n G U
n dxdyDm m





  

 1
0

,
 (4.21) 

 
 Let us consider the behavior of U at the boundary between two layers.  
Before doing so, however, we must clarify the difference between scalar and 
vector quantities. The electric field is a vector and has three components. 
 
 U  =  U1a1 + U2a2 + U3a3 (4.22) 
 
where U1, U2, and U3 are scalars and a1, a2, and a3 are a unit vector basis set.  
Equation (4.6), however, applies to a scalar wave function U, not a vector.  Since 
the wave equation (4.2) applies to vectors as well as scalars, if a vector U 
satisfies the homogeneous wave equation, so will each of the scalar components 
U1, U2, and U3.  Thus, equation (4.6) and all the following equations can be 
applied to each scalar component separately, keeping the analysis in terms of 
scalars.  The unit vectors can be any basis set, but for convenience we shall pick 
the conventional Cartesian unit vectors ax, ay, and az for the x, y, and z directions, 
respectively. 
 
 Electromagnetic theory requires boundary conditions to be met at the 
interface between two dielectrics.  Figure 4-8 shows two vectors U and U’ at a 
boundary in the x-y plane and gives the resulting boundary conditions.  If we 
assume G and  G z/  are continuous across each boundary, then at the 
boundary between layers j and j + 1, 
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z-direction

  
Figure 4-8. Electromagnetic boundary conditions at the interface 

between two dielectrics. 
 
 
 
We can apply these boundary conditions to equations (4.19) - (4.21). Equation 
(4.21) tells us that the integral along the surface Dm+1,m is zero for each 
component of U.  Thus, by the above boundary conditions, the integrals along 
the surface Dm,m+1 are also zero.  And, by equation (4.20) the integrals along 
Dm,m-1 must also be zero.  This process can be continued until layer 2 is reached.  
Equation (4.19) then becomes 
 
 U G

z G U
z dxdy U PD





    21
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for each of the three components of U.  Using the boundary conditions on 
equation (4.24) and combining with equation (4.16) yields 
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 As an example of the use of these equations, consider a plane wave 
normally incident on an infinitely long slit.  UI, the incident wave, has no z 
component, thus the last of the three equations (4.25) is zero.  The first two 
equations become 
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and the intensity at P becomes 
 
 I P I C G x P
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w

( ) ( , ) ( , )  
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
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

  (4.27) 
 
 It is interesting to note that the above expression for intensity is identical 
to the expression one would obtain for the case of a homogeneous medium (e.g., 
from equation (4.14)).  The only difference is the choice of the Green’s function.  
In the above discussion we have placed many restrictions on G and the 
usefulness of equations (4.26) or (4.27) will depend on our ability to determine a 
suitable function for G.  The Green’s function must satisfy the homogeneous 
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wave equation in each layer, it must be continuous and have a continuous first 
derivative across each boundary, and it must take the form of equation (4.18) in 
layer 2.  As was mentioned previously, the Green’s function can be thought of as 
the response of the system to a point source at P.  It can be shown that this 
response meets the three conditions above.  In the next section, the Green’s 
function for a specific case is determined. 
 
D.  Determining Green’s Function 
 
 The cases of proximity and contact printing can now be treated using the 
diffraction theory given above.  A mask located above the resist will generate a 
diffraction pattern which is z-dependent in amplitude as well as phase.  In this 
case, the medium consists of air over resist over a reflecting substrate and the 
electric field distribution due to a point source must be determined.  Rather than 
determining the electric field in the aperture due to a point source at P, we shall 
solve the conceptually simpler though mathematically equivalent problem of 
finding the electric field at P due to a point source in the aperture.  Consider the 
geometry shown in Figure 4-9.  For simplicity, a new coordinate system has been 
defined so that z = 0 on the resist surface. A geometrical approach will be used 
in which the electric field at an arbitrary point in the resist P is the sum of the 
rays emanating from the point source which pass through P.  The first ray is 
simply refracted at the resist surface to pass through (x, z) (Figure 4-9). 
 
 Using Snell’s Law and the geometry of the situation, 
 
 a z

o
g cos  

 
 b z

o  cos  
 
 cos sin  
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n  
 
  cos sin  1 2 1
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Figure 4-9. Geometry used in determining Green’s function. 
 
 
 
Determining the angle  is more complicated than it may seem.  The function (z,zg,x) is of sixth order and must be solved numerically.  The standard 
engineering approach (guess , calculate , then iterate until convergence) does 
not always converge in a stable manor.  The best approach is to apply Fermat’s 
principle, which states that the optical path length n1ao + n2bo will be a 
minimum.  A suitable algorithm, such as the bisection or Newton’s method, can 
be used to minimize this function and determine the angles. 
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Figure 4-10. Geometry used in determining Green’s functions after one 

reflection. 
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 The transmission and reflection coefficients must be applied for oblique 
incidence.  However, at this point, parallel or perpendicular polarization must be 
chosen.  For the following discussion perpendicular polarization only is used.  
However, to model the more commonly used unpolarized light, one must 
calculate the intensity for both polarizations then average the two results.  For 
perpendicular polarization, the Fresnel reflection and transmission coefficients 
are (see Chapter 3, equation 3.7) 
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 (4.29) 

 
The electric field due to a ray with no reflections, Eo, becomes 
 
    E a b eo

o o
i k a k bo o 

  12 1 2  (4.30) 
 
where k1 and k2 are the propagation constants in media 1 and 2, respectively. 
 
 The next ray to be considered has one reflection (Figure 4-10).  Let a1 be 
the distance the ray travels in air and b1 the distance the ray travels in the resist.  
It can be shown that equations (4.28) - (4.29) will give the proper results if the 
variable z is replaced by z1 where 
 
 z D z1 2   (4.31) 
 
Similarly, after n reflections equations (4.28) - (4.29) are true when z is replaced 
by zn where 
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 z nD z for n evenn   ,  
 
    n D z for n odd1 ,  (4.32) 
 
 The expression for the electric field caused by a ray undergoing n 
reflections becomes, for n even, 
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and for n odd, 
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The total electric field at the point (x,z) is then the algebraic sum of each ray. 
 
 G En

n
 




0
 (4.34) 

 
Fortunately, the series (4.34) converges very rapidly, within five or six terms 
using typical parameters. 
 
 Knowing G, the integral (4.27) can be evaluated numerically.  Figure 4-
11 shows  the solution to this integral as a function of depth into a 1m 
photoresist film on a silicon substrate for a 1.0m isolated space and a 0.1m 
mask-wafer gap. 
 
E.  Contact Printing 
 
 Kirchhoff’s integral has been found experimentally to be valid for values 
of zg as small as half a wavelength, and for line or space widths of a wavelength 
or more [4.2], even using the non-physical black screen boundary conditions.  
For typical photoresist applications this translates into zg > 0.2µm.  This 
condition is certainly met during proximity printing, and is quite often true for 



Diffraction for Contact and Proximity Printing 

 

65

contact printing.  Usually, the tolerances for wafer and mask flatness are less 
stringent than 0.2µm.  Thus, the above analysis for proximity printing is rigorous 
enough for most contact printing applications.  A notable exception is 
conformable contact printing, in which a thin mask is allowed to conform to the 
topography of the wafer, making zg a small fraction of a wavelength [4.3].  For 
this case, an accurate diffraction pattern near the top of the resist can be obtained 
only by finding a solution to the exact electromagnetic boundary value problem 
using Maxwell’s equations.  Solutions of this sort can be found [4.4,4.5], but are 
quite complicated. 
 
 Although all of the discussions thus far have been limited to 
monochromatic radiation, contact and proximity printers almost exclusively 
employ polychromatic sources (e.g., a mercury arc lamp) for their exposures.  
The effects of polychromatic illumination can be accounted for using an analysis 
given previously [4.6], and is easily incorporated into a contact printing model. 
 

  
Figure 4-11. Typical diffraction image inside a 1m thick photoresist on a 

silicon substrate ( = 436nm, zg = 0.1 m, 1.0 m isolated 
space). 
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 The above analysis allows one to calculate the intensity of light within a 
photoresist layer during contact or proximity printing. 
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Chapter 5 
Photoresist Exposure Kinetics 

 
 
 The kinetics of photoresist exposure is intimately tied to the 
phenomenon of absorption.  The discussion below begins with a description of 
absorption, followed by the chemical kinetics of exposure.  Next, the chemistry 
of chemically amplified resists will be reviewed.  Finally, a description of the 
measurement method for the kinetic exposure parameters will be given. 
 
A.  Absorption 
 
 The phenomenon of absorption can be viewed on a macroscopic or a 
microscopic scale.  On the macro level, absorption is described by the familiar 
Lambert and Beer laws, which give a linear relationship between absorbance and 
path length times the concentration of the absorbing species.  On the micro level, 
a photon is absorbed by an atom or molecule, promoting an electron to a higher 
energy state.  Both methods of analysis yield useful information needed in 
describing the effects of light on a photoresist.   
 
 The basic law of absorption is an empirical one.  It was first expressed 
by Lambert (circa 1760) and can be expressed in differential form as 
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 dI

dz I   (5.1) 
 
where I is the intensity of light traveling in the z-direction through a medium, 
and  is the absorption coefficient of the medium and has units of inverse length.  
This law is basically a single photon absorption probability equation:  the 
probability that a photon will be absorbed is proportional to the photon flux.  In 
a homogeneous medium (i.e.,  is not a function of z), equation (5.1) may be 
integrated to yield 
 
 I z I z( ) exp( ) 0   (5.2) 
 
where z is the distance the light has traveled through the medium and Io is the 
intensity at z = 0.  If the medium is inhomogeneous, equation (5.2) becomes 
 
 I z I Abs z( ) exp( ( )) 0  (5.3) 
 
where 
 Abs z z dz the absorbancez( ) ( ' ) '  0  
 
 When working with electromagnetic radiation, it is often convenient to 
describe the radiation by its complex electric field vector.  The propagation of an 
electric field through some material can implicitly account for absorption by 
using a complex index of refraction n for the material such that 
 
 n  =  n - i (5.4) 
 
The imaginary part of the index of refraction is related to the absorption 
coefficient by  
 
   =  4/ (5.5) 
 
Note that the sign of the imaginary part of the index in equation (5.4) depends on 
the sign convention chosen for the phasor representation of the electric field (see 
equation (3.4) in Chapter 3).  For typical absorption calculations in thin films, 
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the “standard” sign convention most commonly used in the literature results in a 
negative imaginary part of the index of refraction.  If the wrong sign is chosen in 
equation (5.4), the material will amplify the electric field rather than absorb it! 
 
 In 1852, August Beer showed that for dilute solutions the absorption 
coefficient is proportional to the concentration of the absorbing species in the 
solution. 
 
 solution  =  ac (5.6) 
 
where a is the molar absorption coefficient (sometimes called the extinction 
coefficient) of the absorbing species (given by a = MW/,  where 0 is the 
absorption coefficient of the pure material, MW is the molecular weight,   is the 
density) and c is the concentration.  The stipulation that the solution be dilute 
expresses a fundamental limitation of Beer's law.  At high concentrations, where 
absorbing molecules are close together, the absorption of a photon by one 
molecule may be affected by a nearby molecule [5.1].  Since this interaction is 
concentration dependent, it causes deviation from the linear relation (5.6).  Also, 
an apparent deviation from Beer's law occurs if the real part of the index of 
refraction changes appreciably with concentration.  Thus, the validity of Beer’s 
law should always be verified over the concentration range of interest. 
 
 For an N component homogeneous solid, the overall absorption 
coefficient becomes 
 
  T j j

j

N a c



1
 (5.7) 

 
The linear addition of absorption terms presumes that Beer’s law holds across 
components, i.e., that the absorption by one material is not influenced by the 
presence of the other materials.  Of the total amount of light absorbed, the 
fraction of light which is absorbed by component i is given by 
 
 I

I
a cAi

AT
i i

T
   (5.8) 
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where IAT is the total light absorbed by the film, and IAi is the light absorbed by 
component i. 
 
 We will now apply the concepts of macroscopic absorption to a typical 
positive photoresist.  A diazonaphthoquinone positive photoresist (such as 
AZ1350J) is made up of four major components; a base resin R that gives the 
resist its structural properties, a photoactive compound M (abbreviated PAC, this 
is the light sensitive moiety in the resist), exposure products P generated by the 
reaction of M with ultraviolet light, and a solvent S.  Although photoresist drying 
during prebake is intended to drive off solvents, thermal studies have shown that 
a resist may contain up to 10% solvent after a typical prebake [5.2, 5.3].  The 
absorption coefficient  is then 
 
     a M a P a R a SM P R S  (5.9) 
 
If Mo is the initial PAC concentration (i.e., with no UV exposure), the 
stoichiometry of the exposure reaction gives 
 
 P  =  Mo - M (5.10) 
 
Equation (5.9) may be rewritten as [5.4] 
 
   =  Am + B (5.11) 
 
where A = (aM - aP)Mo 
 B = aPMo + aRR + aSS 
 m = M/Mo 
 
A and B are called the bleachable and non-bleachable absorption coefficients, 
respectively, and make up the first two Dill photoresist parameters [5.4].  Other 
non-bleachable components of the photoresist (such as a dye additive) are added 
to the B term above. 
 
 The quantities A and B are experimentally measurable [5.4] and can be 
easily related to typical resist absorbance curves, measured using a UV 
spectrophotometer.  When the resist is fully exposed, M = 0 and 
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 exposed  =  B (5.12) 
 
Similarly, when the resist is unexposed, m = 1 (M = Mo) and 
 
 unexposed  =  A + B (5.13) 
 
From this A may be found by 
 
 A  =  unexposed  -  exposed (5.14) 
 
Thus, A() and B() may be determined from the UV absorbance curves of 
unexposed and completely exposed resist (Figure 5-1).  A more complete 
description of the measurement of A and B will be given in a following section. 
 
 
 

Resist A & B Parameters (1/m)

Wavelength (nm)
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Figure 5-1. Resist parameters A and B as a function of wavelength measured 

with a UV spectrophotometer for a typical g-line resist.  
 
 
 As mentioned previously, Beer's law is empirical in nature and, thus, 
should be verified experimentally.  In the case of positive photoresists, this 
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means formulating resist mixtures with differing photoactive compound to resin 
ratios and measuring the resulting A parameters.  Previous work has shown that 
Beer’s law is valid for conventional photoresists over the full practical range of 
PAC concentrations [5.5]. 
 
B.  Exposure Kinetics 
 
 On a microscopic level, the absorption process can be thought of as 
photons being absorbed by an atom or molecule causing an outer electron to be 
promoted to a higher energy state.  This phenomenon is especially important for 
the photoactive compound since it is the absorption of UV light that leads to the 
chemical conversion of M to P. 
 
 M PUV   (5.15) 
 
This concept is stated in the first law of photochemistry: only the light that is 
absorbed by a molecule can be effective in producing photochemical change in 
the molecule.  The actual chemistry of diazonaphthoquinone exposure is given 
below [5.6]: 
 

 
SO2
R

UV
O

N2

SO2
R

C=O
+   N2

H2O

SO2
R

COOH

 (5.16) 
 
 The chemical reaction (5.15) can be rewritten in a more general form as 
 
 M M Pk

k
k1

2

3    *  (5.17) 
 
where M is the photoactive compound (PAC), M* is the PAC molecule in an 
excited state, P is the carboxylic acid (product), and  k1, k2, k3 are the rate 
constants for each reaction.  Simple kinetics can now be applied.  The proposed 
mechanism (5.17) assumes that all reactions are first order.  Thus, the rate 
equation for each species can be written. 
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 dM
dt k M k M 2 1*  

 
 dM

dt k M k k M* ( ) *  1 2 3  
 
 dP

dt k M 3 *  (5.18) 
 
 A system of three coupled linear first order differential equations can be 
solved exactly using Laplace transforms and the initial conditions [5.7] 
 
 M t Mo( ) 0  
 M t P t* ( ) ( )   0 0 0  (5.19) 
 
However, if one uses the steady state approximation the solution becomes much 
simpler.  This approximation assumes that in a very short time the excited 
molecule M* comes to a steady state, i.e., M* is formed as quickly as it 
disappears.  In mathematical form, 
 
 dM

dt
*  0  (5.20) 

 
A previous study has shown that M* does indeed come to a steady state quickly, 
on the order of 10-8 seconds or faster [5.7].  Thus, 
 
 dM

dt KM   (5.21) 
 
where 
 
 K k k

k k 1 3
2 3

 
 
Assuming K remains constant with time (an assumption we shall soon dispose 
of), 
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 M M Kto exp( )  (5.22) 
 
The overall rate constant K is a function of the intensity of the exposure 
radiation.  An analysis of the microscopic absorption of a photon predicts that K 
is directly proportional to the intensity of the exposing radiation [5.5].  The rate 
constant k1 in equation (5.17) will be proportional to the rate of photon 
absorption, which in turn is proportional to the photon flux (by Lambert’s law) 
and thus the intensity.  A more useful form of equation (5.21) is then 
 
 dm

dt CIm   (5.23) 
 
where the relative PAC concentration m (= M/Mo) has been used and C is the 
standard exposure rate constant and the third Dill photoresist parameter [5.4]. 
 
 A solution to the exposure rate equation (5.23) is simple if the intensity 
within the resist is constant throughout the exposure.  However, this is generally 
not the case.  In fact, many resists bleach upon exposure, that is, they become 
more transparent as the photoactive compound M is converted to product P.  
This corresponds to a positive value of A, as seen, for example, in Figure 5-1.  
Since the intensity varies as a function of exposure time, this variation must be 
known in order to solve the exposure rate equation.  In the simplest possible 
case, a resist film coated on a substrate of the same index of refraction, only 
absorption affects the intensity within the resist.  Thus, Lambert’s law of 
absorption, coupled with Beer’s law, could be applied. 
 
 dI

dz Am B I  ( )  (5.24) 
 
where equation (5.11) was used to relate the absorption coefficient to the relative 
PAC concentration.  Equations (5.23) and (5.24) are coupled, and thus become 
first order non-linear partial differential equations which must be solved 
simultaneous.  The solution to equations (5.23) and (5.24) was first carried out 
numerically for the case of lithography simulation [5.4], but in fact was solved 
analytically by Herrick [5.8] many years earlier.  The same solution was also 
presented more recently by Diamond and Sheats [5.9] and by Babu and Barouch 
[5.10].  These solutions take the form of a single numerical integration, which is 
much simpler than solving two differential equations! 
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 Although an analytical solution exists for the simple problem of 
exposure with absorption only, in more realistic problems the variation of 
intensity with depth in the film is more complicated than equation (5.24).  In 
fact, the general exposure situation results in the formation of standing waves, as 
discussed previously.  In such a case, equations (4.1) - (4.4) can give the 
intensity within the resist as a function of the PAC distribution m(x,y,z,t).  
Initially, this distribution is simply m(x,y,z,0) = 1 (resulting in a uniform index 
of refraction).  Thus, equation (4.1), for example, would give I(x,y,z,0).  The 
exposure equation (5.23) can then be integrated over a small increment of 
exposure time t to produce the PAC distribution m(x,y,z,t).  The assumption is 
that over this small increment in exposure time the intensity remains relatively 
constant, leading to the exponential solution   
 
 m x y z t t m x y z t CI t( , , , ) ( , , , ) exp( )     (5.25) 
 
This new PAC distribution is then used to calculate the new intensity 
distribution I(x,y,z,t), which in turn is used to generate the PAC distribution at 
the next increment of exposure time m(x,y,z,2t).  This process continues until 
the final exposure time is reached.   
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Figure 5-2.  The exposure process takes an aerial image (a) and converts it into 

a latent image (b). 
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 The final result of exposure is the conversion of an aerial image I(x,y,z) 
into a latent image m(x,y,z).  Figure 5-2 illustrates a one-dimensional case. 
 
C.  Chemically Amplified Resists 
 
 Chemically amplified photoresists are composed of a polymer resin 
(possibly “blocked” to inhibit dissolution), a photoacid generator (PAG), and 
possibly a crosslinking agent, dye or other additive.  As the name implies, the 
photoacid generator forms a strong acid when exposed to Deep-UV light.  Ito 
and Willson first proposed the use of an aryl onium salt [5.11], and 
triphenylsulfonium salts have been studied extensively as PAGs.  The reaction 
of a common PAG is shown below: 
 
 

 

Ph
Ph

Ph
S+ CF3COO- h CF3COOH   +   others

 (5.26) 
 
 
The acid generated in this case (trifluoroacetic acid) is a derivative of acetic acid 
where the electron-drawing properties of the fluorines are used to greatly 
increase the acidity of the molecule.  The PAG is mixed with the polymer resin 
at a concentration of typically 5-15% by weight, with 10% as a typical 
formulation. 
 
 The kinetics of the exposure reaction are presumed to be standard first 
order: 
 
 


G
t CIG  =    -  (5.27) 

 
where G is the concentration of PAG at time t (the initial PAG concentration is 
Go), I is the exposure intensity, and C is the exposure rate constant.  For constant 
intensity, the rate equation can be solved for G: 
 
 G Go CIte =   -  (5.28) 
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The acid concentration H is given by 
 
  H G G Go o CIte =   -   =    -  -1  (5.29) 
 
If the intensity is not constant throughout the exposure, then the iterative 
approach described in the section above can certainly be used. 
 
 Exposure of the resist with an aerial image I(x) results in an acid latent 
image H(x).  A post-exposure bake (PEB) is then used to thermally induce a 
chemical reaction.  This may be the activation of a crosslinking agent for a 
negative resist or the deblocking of the polymer resin for a positive resist.  The 
reaction is catalyzed by the acid so that the acid is not consumed by the reaction 
and, to first order, H remains constant.  Ito and Willson first proposed the 
concept of deblocking a polymer to change its solubility [5.11].  A base polymer 
such as polyhydroxystyrene, PHS, is used which is very soluble in an aqueous 
base developer.  It is the hydroxyl groups which give the PHS its high solubility 
so by “blocking” these sites (by reacting the hydroxyl group with some longer 
chain molecule) the solubility can be reduced.  Ito and Willson employed a t-
butoxycarbonyl group (t-BOC), resulting in a very slowly dissolving polymer.  
In the presence of acid and heat, the t-BOC blocked polymer will undergo 
acidolysis to generate the soluble hydroxyl group, as shown below. 
 
 

 
CH3

CH2-CH

O
O
C
O

CH3
CH3C

CH2-CH

OH

H+
+  CH2

CH3

CH3

C +  CO2

 (5.30) 
 
 
 One drawback of this scheme is that the cleaved t-BOC is volatile and 
will evaporate, causing film shrinkage in the exposed areas.  Larger molecular 
weight blocking groups can be used to reduce this film shrinkage to acceptable 
levels (below 10%).  Also, the blocking group is such an effective inhibitor of 
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dissolution that nearly every blocked site on the polymer must be deblocked in 
order to obtain significant dissolution.  Thus, the photoresist can be made more 
“sensitive” by only partially blocking the PHS.  Typical photoresists use 10-30% 
of the hydroxyl groups blocked, with 20% a typical value.  Molecular weights 
for the PHS run in the range of 3000 to 5000 giving about 20 to 35 hydroxyl 
groups per polymer molecule, about 4 to 7 of which are initially blocked. 
 
 Using M as the concentration of some reactive site, these sites are 
consumed (i.e., are reacted) according to kinetics of some unknown order in H 
and first order in M [5.12]: 
 
 


M
t K M Hn   =    - amp  (5.31) 

 
where Kamp is the rate constant of the amplification reaction (crosslinking, 
deblocking, etc.) and t' is the bake time.  Simple theory would indicate that n = 
1, but the general form will be used here.  Assuming H is constant, equation 
(5.31) can be solved for the concentration of reacted sites X: 
 
  X M M Mo o

K H te n =  -   =    -  - amp1   (5.32) 
 
(Note:  Although H+ is not consumed by the reaction, the value of H is not 
locally constant.  Diffusion during the PEB and acid loss mechanisms cause 
local changes in the acid concentration, thus requiring the use of a reaction-
diffusion system of equations.  The approximation that H is constant is a useful 
one, however, which gives insight into the reaction as well as accurate results 
under some conditions.) 
 
 It is useful here to normalize the concentrations to some initial values.  
This results in a normalized acid concentration h and normalized reacted and 
unreacted sites x and m: 
 
 h H

G x X
M m M

Mo o o
 =               =               =     (5.33) 

 
Equations (5.30) and (5.32) become 
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 h e C I t =   -  -1   
 m x e hn =  1-  =  -  (5.34) 
 
where  is a lumped “amplification” constant equal to Go

nKamp t'.  The result of 
the PEB is an amplified latent image m(x), corresponding to an exposed latent 
image h(x), resulting from the aerial image I(x). 
 
 The above analysis of the kinetics of the amplification reaction assumed 
a locally constant concentration of acid H.  Although this could be exactly true 
in some circumstances, it is typically only an approximation, and is often a poor 
approximation.  In reality, the acid diffuses during the bake.  In one dimension, 
the standard diffusion equation takes the form 
 
 








H
t z D H

zH     (5.35) 
 
where DH is the diffusivity of acid in the photoresist.  Solving this equation 
requires a number of things:  two boundary conditions for each dimension, one 
initial condition, and a knowledge of the diffusivity as a function of position and 
time. 
 
 The initial condition is the initial acid distribution within the film, 
H(x,y,z,0), resulting from the exposure of the PAG. The two boundary conditions 
are at the top and bottom surface of the photoresist film.  The boundary at the 
wafer surface is assumed to be impermeable, giving a boundary condition of no 
diffusion into the wafer.  The boundary condition at the top of the photoresist 
will depend on the diffusion of acid into the atmosphere above the wafer, as 
described below.  In the plane of the wafer (x- and y-directions), boundary 
conditions will depend on the geometry of the problem. 
 
 The solution of equation (5.35) can now be performed if the diffusivity 
of the acid in the photoresist is known.  Unfortunately, this solution is 
complicated by two very important factors:  the diffusivity is a strong function of 
temperature and, most probably, the extent of amplification.  Since the 
temperature is changing with time during the bake, the diffusivity will be time 
dependent.  The concentration dependence of diffusivity results from an increase 
in free volume for typical positive resists:  as the amplification reaction 
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proceeds, the polymer blocking group evaporates resulting in a decrease in film 
thickness but also an increase in free volume (and probably a change in the glass 
transition temperature as well).  Since the acid concentration is time and position 
dependent, the diffusivity in equation (5.35) must be determined as a part of the 
solution of equation (5.35) by an iterative method.  The resulting simultaneous 
solution of equations (5.31) and (5.35) is called a reaction-diffusion system. 
 
 The temperature dependence of the diffusivity can be expressed in a 
standard Arrhenius form: 
 
  D T A E RTo r a( ) exp /   (5.36) 
 
where Do is a general diffusivity, Ar is the Arrhenius coefficient, Ea is the 
activation energy, R is the universal gas constant, and T is the absolute 
temperature.  A full treatment of the amplification reaction would include a 
thermal model of the hotplate in order to determine the actual time-temperature 
history of the wafer [5.13].  To simplify the problem, an ideal temperature 
distribution will be assumed -- the temperature of the resist is zero (low enough 
for no diffusion or reaction) until the start of the bake, at which time it 
immediately rises to the final bake temperature, stays constant for the duration of 
the bake, then instantly falls back to zero.   
 
 The concentration dependence of the diffusivity is less obvious.  Several 
authors have proposed and verified the use of different models for the 
concentration dependence of diffusion within a polymer.  Of course, the simplest 
form (besides a constant diffusivity) would be a linear model.  Letting Do be the 
diffusivity of acid in completely unreacted resist and Df the diffusivity of acid in 
resist which has been completely reacted,  
 
  D D x D DH o f o    (5.37) 
 
Here, diffusivity is expressed as a function of the extent of the amplification 
reaction x.  Another common form is the Fujita-Doolittle equation [5.14] which 
can be predicted theoretically using free volume arguments.  A form of that 
equation which is convenient for calculations is shown here: 
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 D D x
xH o 





exp 

1  (5.38) 
 
where  and  are experimentally determined constants.  Other concentration 
relationships are also possible [5.15], but only constant, linear, and exponential 
are used in PROLITH/2. 
 
 Through a variety of mechanisms, acid formed by exposure of the resist 
film can be lost and thus not contribute to the catalyzed reaction to change the 
resist solubility.  There are two basic types of acid loss:  loss that occurs 
between exposure and post-exposure bake, and loss that occurs during the post-
exposure bake.  The first type of loss leads to delay time effects -- the resulting 
lithography is affected by the delay time between exposure and post-exposure 
bake.  Delay time effects can be very severe and, of course, are very detrimental 
to the use of such a resist in a manufacturing environment [5.16, 5.17].  The 
typical mechanism for delay time acid loss is the diffusion of atmospheric base 
contaminates into the top surface of the resist.  The result is a neutralization of 
the acid near the top of the resist and a corresponding reduced amplification.  
For a negative resist, the top portion of a line is not insolublized and resist is lost 
from the top of the line.  For a positive resist, the effects are more devastating.  
Sufficient base contamination can make the top of the resist insoluble, blocking 
dissolution into the bulk of the resist (Figure 5-3).  In extreme cases, no patterns 
can be observed after development.  Another possible delay time acid loss 
mechanism is base contamination from the substrate, as has been observed on 
TiN substrates [5.17]. 
 
 The effects of acid loss due to atmospheric base contaminants can be 
accounted for in a straightforward manner [5.18].  The base diffuses slowly from 
the top surface of the resist into the bulk.  Assuming that the concentration of 
base contaminant in contact with the top of the resist remains constant, the 
diffusion equation can be solved for the concentration of base, B, as a function 
of depth into the resist film: 
 
  B B zo exp ( / ) 2  (5.39) 
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      (a) (b) 
 
Figure 5-3. Atmospheric base contamination leads to T-top formation.  Shown 

are line/space features printed in APEX-E for (a) 0.275m features 
with no delay and (b) 0.325m features with 10 minute delay 
between exposure and post-exposure bake (courtesy of 
SEMATECH). 

 
 
 
where Bo is the base concentration at the top of the resist film, z is the depth into 
the resist (z=0 at the top of the film) and  is the diffusion length of the base in 
resist.  The standard assumption of constant diffusivity has been made here so 
that diffusion length goes as the square root of the delay time. 
 
 Since the acid generated by exposure for most resist systems of interest 
is fairly strong, it is a good approximation to assume that all of the base 
contaminant will react with acid if there is sufficient acid present.  Thus, the acid 
concentration at the beginning of the PEB, H*, is related to the acid 
concentration after exposure, H, by 
 
 H H B or h h b* *     (5.40) 
 
where the lower case symbols again represent the concentration relative to Go, the initial photoacid generator concentration. 
 
 Acid loss during the PEB could occur by other mechanisms.  For 
example, as the acid diffuses through the polymer, it may encounter sites which 
“trap” the acid, rendering it unusable for further amplification.  If these traps 
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were in much greater abundance than the acid itself (for example, sites on the 
polymer), the resulting acid loss rate would be first order, 
 
 


h
t K hloss   = -  (5.41) 

 
where Kloss is the acid loss reaction rate constant.  Of course, other more 
complicated acid loss mechanisms can be proposed, but in the absence of data 
supporting them, the simple first order loss mechanism will be used here. 
 
 Acid can also be lost at the top surface of the resist due to evaporation.  
The amount of evaporation is a function of the size of the acid and the degree of 
its interaction with the resist polymer.  A small acid (such as the trifluoroacetic 
acid discussed above) may have very significant evaporation.  A separate rate 
equation can be written for the rate of evaporation of acid: 
 
  


h
t K h t h tevap air   

z=0
  = - ( , ) ( , )0 0  (5.42) 

 
where z = 0 is the top of the resist and hair is the acid concentration in the 
atmosphere just above the photoresist surface.  Typically, the PEB takes place in 
a reasonably open environment with enough air flow to eliminate any buildup of 
evaporated acid above the resist, making hair = 0.  If Kevap is very small, then 
virtually no evaporation takes place and we say that the top boundary of the 
resist is impenetrable. If Kevap is very large (resulting in evaporation that is much 
faster than the rate of diffusion), the effect is to bring the surface concentration 
of acid in the resist to zero.  The significance of Kevap is best viewed by 
comparing the magnitude of Kevap to Kamp (i.e., how fast does evaporation occur 
relative to amplification). 
 
 The combination of a reacting system and a diffusing system is called a 
reaction-diffusion system.  The solution of such a system is the simultaneous 
solution of equations (5.31) and (5.35) using equation (5.30) as an initial 
condition and equation (5.37) or (5.38) to describe the reaction-dependent 
diffusivity.  Of course, any or all of the acid loss mechanisms can also be 
included.  A convenient and straightforward method to solve such equations is 
the finite difference method (see, for example, reference [5.19]).  The equations 
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are solved by approximating the differential equations by difference equations.  
By marching through time and solving for all space at each time step, the final 
solution is the result after the final time step.  A key part of an accurate solution 
is the choice of a sufficiently small time step.  If the spatial dimension of interest 
is x (or y or z), the time step should be chosen such that the diffusion length 
is less than x (using a diffusion length of about one third of x is common). 
 
D.  Measuring the ABC Parameters 
 
 Dill proposed a single, simple experiment for measuring the ABC 
parameters [5.4].  The photoresist to be measured is coated in a non-reflecting 
substrate (e.g., glass, quartz, or similar material).  The resist is then exposed by a 
normally incident parallel beam of light at the wavelength of measurement.  At 
the same time, the intensity of the light transmitted through the substrate is 
measured continuously.  The output of the experiment, transmitted intensity as a 
function of exposure time, is then analyzed to determine the resist ABC 
parameters.  A typical experimental setup is shown in Figure 5-4. 
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Figure 5-4. Experimental configuration for the measurement of the ABC 

parameters.  
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 By measuring the incident exposing light intensity, the output of the 
experiment becomes overall transmittance as a function of incident exposure 
dose, T(E).  Figure 5-5 shows a typical result.  Assuming careful measurement of 
this function, and a knowledge of the thickness of the photoresist, all that 
remains is the analysis of the data to extract the ABC parameters.  Dill proposed 
two methods for extracting the parameters [5.4].  Those methods will be 
reviewed here and a third, more accurate approach will be shown. 
 
 Note that the effectiveness of this measurement technique rests with the 
non-zero value of A.  If the photoresist does not change its optical properties 
with exposure (i.e., if A = 0), then measuring transmittance will provide no 
insight on the exposure reaction, making C unobtainable by this method. 
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Figure 5-5. Typical transmittance curve of a positive g- or i-line bleaching 

photoresist measured using an apparatus similar to that pictured in 
Figure 5-4.  
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1.  Graphical Data Analysis  (Method 1) 

 
 Analysis of the experimental data is greatly simplified if the 
experimental conditions are adjusted so that the simple exposure and absorption 
equations (5.23) and (5.24) apply exactly.  This means that light passing through 
the resist must not reflect at the resist/substrate interface.  Further, light passing 
through the substrate must not reflect at the substrate/air interface.  The first 
requirement is met by producing a transparent substrate with the same index of 
refraction as the photoresist.  The second requirement is met by coating the 
backside of the substrate with an interference-type antireflection coating (ARC).   
 
 Given such ideal measurement conditions, Dill showed that the ABC 
parameters can be obtained from the transmittance curve by measuring the initial 
transmittance T(0), the final (completely exposed) transmittance T(), and the 
initial slope of the curve.  The relationships are: 
 
 A D

T
T 





1
0ln ( )

( )  (5.43a) 
 
  B D T  1 ln ( )  (5.43b) 
 
 C A B

AT T T
dT
dE E

 
 ( ){ ( )}0 1 0 12 0

 (5.43c) 
 
where D is the resist thickness and T12 is the transmittance of the air-resist 
interface and is given, for a resist index of refraction nresist, by 
 
 T n

n
resist
resist

12
2

1 1
1  






  (5.44) 
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2.  Differential Equation Solution  (Method 2) 
 
 Although graphical analysis of the data is quite simple, it suffers from 
the common problem of errors when measuring the slope of experimental data.  
As a result, the value of C (and to a lesser extent, A) obtained often contains 
significant error.  Dill also proposed a second method for extracting the ABC 
parameters from the data.  Again assuming that the ideal experimental conditions 
had been met, the ABC parameters could be obtained by directly solving the two 
coupled partial differential equations (5.23) and (5.24) and finding the values of 
A, B, and C for which the solution best fits the experimental data.  Obviously, 
fitting the entire experimental curve is much less sensitive to noise in the data 
than taking the slope at one point.  Several techniques are available to provide a 
simple numerical solution [5.8-5.10]. 
 

3.  Full Simulation  (Method 3) 
 
 Methods 1 and 2 give accurate results only to the extent that the actual 
experimental conditions match the ideal (no reflection) conditions.  In reality, 
there will always be some deviation from this ideal.  Substrates will invariably 
have an index somewhat different that of the photoresist.  And since the index of 
refraction of the photoresist changes with exposure, even a perfect substrate will 
be optically matched at only one instant in time during the experiment.  Backside 
ARCs may also be less than perfect.  In fact, most experimenters would prefer to 
use off-the-shelf glass or quartz wafers with no backside ARC.  Under these 
conditions, how accurate are the extracted ABC parameters? 
 
 The dilemma can be solved by eliminating the restrictions of the ideal 
experiment.  Rather than solving for the transmitted intensity via equations 
(5.23) and (5.24), one could use a lithography simulator to solve for the 
transmittance in a non-ideal case including changes in the resist index of 
refraction during exposure and reflections from both the top and bottom of the 
substrate.  Then, by adjusting the ABC parameters, a best fit of the model to the 
data could be obtained.  This method provides the ultimate accuracy in obtaining 
extracted ABC parameters [5.20]. 
 
 All three methods described above have been incorporated into ProABC. 
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Chapter 6 
Photoresist Bake Effects 

 
 
Baking a resist may have many purposes, from removing solvent to causing 
chemical amplification.  In addition to the intended results, baking may also 
cause numerous unintended outcomes.  For example, the light sensitive 
component of the resist may decompose at temperatures typically used to 
remove solvent.  The solvent content of the resist can impact diffusion and 
amplification rates for a chemically amplified resist.  And all aspects of baking 
will probably affect the dissolution properties of the resist.  Baking a photoresist 
remains one of the most complicated and least understood steps in the 
lithographic process. 
 
A.  Prebake 
 
 The purpose of a positive photoresist prebake is to dry the resist after 
spin coating by removing solvent from the film.  However, as with most thermal 
processing steps, the bake has other effects on the photoresist.  When heated to 
temperatures above about 70ºC, the photoactive compound (PAC) of a diazo-
type positive photoresist begins to decompose to a non-photosensitive product.  
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The initial reaction mechanism is thought to be identical to that of the PAC 
reaction during ultraviolet exposure [6.1-6.4]. 
 
 

 
SO2
R


O

N2

SO2
R

C=O
+   N2 X

 (6.1) 
 
 
The identity of the product X will be discussed in a following section. 
 
 To determine the concentration of PAC as a function of prebake time 
and temperature, consider the first order decomposition reaction, 
 
 M X   (6.2) 
 
where M is the photoactive compound.  If we let M'o be the concentration of 
PAC before prebake and Mo the concentration of PAC after prebake, simple 
kinetics tells us that 
 
 dM

dt K Mo T o   
 
 M M K to o T b  exp( )  
 
   m K tT bexp( )  (6.3) 
 
where tb  =  bake time, 
 KT  =  decomposition rate constant at absolute temperature T, and 
 m'  =  Mo /M'o, the fraction of PAC remaining after the bake. 
 
The dependence of KT upon temperature may be described by the Arrhenius 
equation, 
 
 K A E RTT r a exp( / )  (6.4) 
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where Ar  =  Arrhenius coefficient, 
 Ea  =  activation energy, and 
 R  =  universal gas constant. 
 
Thus, the two parameters Ea and Ar allow us to know m' as a function of the 
prebake conditions, provided Arrhenius behavior is followed.  In polymer 
systems, caution must be exercised since bake temperatures near the glass 
transition temperature sometimes leads to non-Arrhenius behavior.  For normal 
prebakes of typical photoresists, the Arrhenius model appears well founded. 
 
 The effect of this decomposition is a change in the chemical makeup of 
the photoresist.  Thus, any parameters which are dependent upon the quantitative 
composition of the resist are also dependent upon prebake.  The most important 
of these parameters fall into three categories: 1) optical (exposure) parameters 
such as the resist absorption coefficient, 2) diffusion parameters during post-
exposure bake, and 3) development parameters such as the development rates of 
unexposed and completely exposed resist.  A technique will be described to 
measure Ea and Ar and thus begin to quantify these effects of prebake. 
 
 In the model proposed by Dill et al. [6.5], the exposure of a positive 
photoresist can be characterized by the three parameters A, B, and C.  A and B 
are related to the optical absorption coefficient of the photoresist, , and C is the 
overall rate constant of the exposure reaction.  More specifically, 
 
  = Am + B 
 
 A  = (aM - aP)Mo (6.5) 
 
 B = aPMo + aRR + aSS 
 
where aM  = molar absorption coefficient of the photoactive compound M, 
 aP   = molar absorption coefficient of the exposure product P, 
 aS   = molar absorption coefficient of the solvent S, 
 aR  = molar absorption coefficient of the resin R, 
 Mo  = the PAC concentration at the start of the exposure (i.e., after 
prebake), and 
 m  = M/Mo, the relative PAC concentration as a result of exposure. 
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These expressions do not explicitly take into account the effects of prebake on 
the resist composition.  To do so, we can modify equation (6.5) to include 
absorption by the component X. 
 
 B  =  aPMo + aRR + aXX (6.6) 
 
where aX is the molar absorption coefficient of the decomposition product X (and 
the absorption term for the solvent has been neglected for simplicity).  The 
stoichiometry of the decomposition reaction gives 
 
 X  =  M'o - Mo (6.7) 
Thus, 
 
 B  =  aPMo + aRR + aX(M'o - Mo) (6.8) 
 
 Let us consider two cases of interest, no bake (NB) and full bake (FB).  
When there is no prebake (meaning no decomposition), Mo = M'o and 
 
 ANB  =  (aM-aP)M'o  
 BNB  =  aPM'o + aRR (6.9) 
 
We shall define full bake as a prebake which decomposes all PAC.  Thus Mo = 0 
and 
 
 AFB  =  0 
 
 BFB  =  aXM'o + aRR (6.10) 
 
Using these special cases in our general expressions for A and B, we can show 
explicitly how these two parameters vary with PAC decomposition: 
 
 A  =  ANBm' 
 
 B  =  BFB  -  (BFB -  BNB)m' (6.11) 
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The A parameter decreases linearly as decomposition occurs, and B typically 
increases slightly. 
 
 The development rate is, of course, dependent on the concentration of 
PAC in the photoresist.  However, the product X can also have a large effect on 
the development rate.  Several studies have been performed to determine the 
composition of the product X [6.2-6.4].  The results indicate that there are two 
possible products and the most common outcome of a prebake decomposition is 
a mixture of the two.  The first product is formed via the reaction (6.12) and is 
identical to the product of UV exposure. 
 
 

 
SO2
R

C=O
+   H2O

SO2
R

COOH

 (6.12) 
 
 
As can be seen, this reaction requires the presence of water.  A second reaction, 
which does not require water, is the esterification of the ketene with the resin. 
 
 

 

SO2
R

C=O

SO2
R

CO

Resin
O

CH3

OH

CH3

OH

CH3

 (6.13) 
 
 
Both possible products have a dramatic effect on dissolution rate.  The 
carboxylic acid is very soluble in developer and enhances dissolution.  The 
formation of carboxylic acid can be thought of as a blanket exposure of the 
resist.  The dissolution rate of unexposed resist (rmin) will increase due to the 
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presence of the carboxylic acid.  The dissolution rate of fully exposed resist 
(rmax), however, will not be affected.  Since the chemistry of the dissolution 
process is unchanged, the basic shape of the development rate function will also 
remain unchanged.   
 
 The ester, on the other hand, is very difficult to dissolve in aqueous 
solutions and thus retards the dissolution process.  It will have the effect of 
decreasing rmax, although the effects of ester formation on the full dissolution 
behavior of a resist are not well known. 
 
 If the two mechanisms given in equations (6.12) and (6.13) are taken 
into account, the rate equation (6.3) will become 
 
 dM

dt k M k H O Mo o o  1 2 2[ ]  (6.14) 
 
where k1 and k2 are the rate constants of equations (6.12) and (6.13), 
respectively.  For a given concentration of water in the resist film this reverts to 
equation (6.3) where 
 
 K k k H OT  1 2 2[ ]  (6.15) 
 
Thus, the relative importance of the two reactions will depend not only on the 
ratio of the rate constants but on the amount of water in the resist film.  The 
concentration of water is a function of atmospheric conditions during the bake 
and the past history of the resist coated wafer.  Further experimental 
measurements of development rate as a function of prebake temperature are 
needed to quantify these effects. 
 
 Examining equation (6.11), one can see that the parameter A can be used 
as a means of measuring m', the fraction of PAC remaining after prebake.  Thus, 
by measuring A as a function of prebake time and temperature, one can 
determine the activation energy and the corresponding Arrhenius coefficient for 
the proposed decomposition reaction.  Using the technique given by Dill et al. 
[6.5] and described in the previous chapter,  A, B and C can be easily determined 
by measuring the optical transmittance of a thin photoresist film on a glass 
substrate while the resist is being exposed. 
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Figure 6-1. Two transmittance curves for Kodak 820 resist at 365nm.  The 

curves are for a convection oven prebake of 30 minutes at the 
temperatures shown [6.6].  

 
 
Examples of measured transmittance curves are given in Figure 6-1, where 
transmittance is plotted versus exposure dose.  The different curves represent 
different prebake temperatures.  For every curve, A, B, and C can be calculated.  
Figure 6-2 shows the variation of the resist parameter A with prebake conditions.  
According to equations (6.3) and (6.11), this variation should take the form 
 
 A

A e
NB

K tT b   
 
 ln A

A K t
NB

T b




    (6.17) 
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Thus, a plot of ln(A) versus bake time should give a straight line with a slope 
equal to -KT.  This plot is shown in Figure 6-3.  Knowing KT as a function of 
temperature, one can determine the activation energy and Arrhenius coefficient 
from equation (6.4).  One should note that the parameters ANB, BNB and BFB are 
wavelength dependent, but Ea and Ar are not. 
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Figure 6-2. The variation of the resist absorption parameter A with prebake time 

and temperature for Kodak 820 resist at 365nm [6.6].  
 
 
Figure 6-2 shows an anomaly in which there is a lag time before decomposition 
occurs.  This lag time is the time it took the wafer and wafer carrier to reach the 
temperature of the convection oven.  Equation (6.3) can be modified to 
accommodate this phenomena, 
 
    m e K t tT b wup( )  (6.18) 
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where twup is the warm up time.  A lag time of about 11 minutes was observed 
when convection oven baking a 1/4” thick glass substrate in a wafer carrier.  
When a 60 mil glass wafer was used without a carrier, the warm-up time was 
under 5 minutes and could not be measured accurately in this experiment [6.6]. 
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Figure 6-3. Log plot of the resist absorption parameter A with prebake time and 

temperature for Kodak 820 resist at 365 nm [6.6].  
 
 
 Although all the data presented thus far has been for convection oven 
prebake, the above method of evaluating the effects of prebake can also be 
applied to hot-plate prebaking.  For the data presented in Figure 6-3, the 
activation energy is 30.3 Kcal/mol and the natural logarithm of the Arrhenius 
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coefficient (in 1/minutes) is 35.3 [6.6].  Thus, a 100°C, 30 minute convection 
oven prebake would decompose 11% of the photoactive compound. 
 
B.  Post-Exposure Bake 
 
 Many attempts have been made to reduce the standing wave effect and 
thus increase linewidth control and resolution.  One particularly useful method is 
the post-exposure, pre-development bake as described by Walker [6.7].  A 100ºC 
oven bake for 10 minutes was found to reduce the standing wave ridges on a 
resist sidewall significantly.  This phenomenon can be explained quite simply as 
the diffusion of photoactive compound (PAC) in the resist during the high 
temperature bake.  A mathematical model which predicts the results of such a 
post-exposure bake (PEB) is described below. 
 
 In general, molecular diffusion is governed by Fick’s Second Law of 
Diffusion, which states (in one dimension) 
 
 





C
t

C
t

A A D 2
2  (6.19) 

 
where CA  =  concentration of species A 
 D  =  diffusion coefficient of A at some temperature T 
 t  =  time that the system is at temperature T. 
 
Note that the diffusion coefficient is assumed to be independent of concentration 
here.  This differential equation can be solved given a set of boundary conditions 
and an initial distribution of A.  One possible initial condition is known as the 
impulse source.  At some point xo there are N moles of substance A and at all 
other points there is no A.  Thus, the concentration at xo is infinite.  Given this 
initial distribution of A, the solution to equation (6.19) is the Gaussian 
distribution function, 
 
 C x N eA r( ) / 

2 2
22 2


  (6.20) 

 
where   2D t ,  the diffusion length, and  r  =  x-xo. 
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 In practice there are no impulse sources.  Instead, we can approximate  
an  impulse source as having some concentration Co over some small distance x 
centered at xo, with zero concentration outside of this range.  An approximate 
form of equation (6.20) is then 
 
 C x C x eA o r( ) / 

2 2
22 2


  (6.21) 

 
This solution is fairly accurate if x < 3.  If there are two “impulse” sources 
located at x1 and x2, with initial concentrations C1 and C2 each over a range x, 
the concentration of A at x after diffusion is 
 
 C x C e C e xA r r( ) / / 





 1
2

2 2
2

2
2 2

12 2 22 2

 
    (6.22) 

 
where r1 = x-x1  and   r2 = x-x2.  
If there are a number of sources equation (6.22) becomes 
 
 C x x C enA n

rn( ) / 
2 2

22 2


  (6.23) 

 
Extending the analysis to a continuous initial distribution Co(x), equation (6.23) 
becomes 
 
 C x C x x e dxA o x( ) ( ) /  


 1

2 2
22 2


  (6.24) 

 
where x’ is now the distance from the point x.  Equation (6.24) is simply the 
convolution of two functions. 
 
 C x C x f xA o( ) ( ) ( )   (6.25) 
 
where f x e x( ) / 1

2 2
22 2


  
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This equation can now be made to accommodate two dimensional diffusion. 
 
 C x y C x y f x yA o( , ) ( , ) ( , )   (6.26) 
 
where f x y e r( , ) / 1

2 2
22 2

   
 
 r x y 2 2  
 
Three-dimensional diffusion can similarly be calculated. 
 
 We are now ready to apply equation (6.26) to the diffusion of PAC in a 
photoresist during a post-exposure bake.  For a two-dimensional case, the PAC 
distribution after exposure can be described by m(x,z), where m is the relative 
PAC concentration.  According to equation (6.26) the relative PAC 
concentration after a post-exposure bake, m*(x,z), is given by 
 
 m x z m x x z z e dx dzr*( , ) ( , ) /      


 1

2 2
22 2

   (6.27) 
 
In evaluating equation (6.27) it is common to replace the integrals by 
summations over intervals x and z.  In such a case, the restrictions that x < 
3 and z < 3 will apply.  An alternative solution is to solve the diffusion 
equation (6.19) directly, for example using a finite difference approach.  The 
boundary conditions typically assume the wafer and air interfaces are 
impenetrable. 
 
 The diffusion model can now be used to simulate the effects of a post-
exposure bake.  Using PROLITH/2, a simulated resist profile can be generated.  
By including the model for a post-exposure bake, the profile can be generated 
showing how the standing wave effect is reduced (Figure 6-4).  The only 
parameter that needs to be specified in equation (6.27) is the diffusion length , 
or equivalently, the diffusion coefficient D and the bake time t.  In turn, D is a 
function of the bake temperature T and, of course, the resist system used.  Thus, 
if the functionality of D with temperature is known for a given resist system, a 
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PEB of time t and temperature T can be modeled.  A general temperature 
dependence for the diffusivity D can be found using the Arrhenius equation (for 
temperature ranges which do not traverse the glass transition temperature). 
 
 D D o E RTe a /  (6.28) 
 
where Do  =  Arrhenius constant (units of nm2/s), 
 Ea  =  activation energy, 
 R  =  universal gas constant, and 
 T  =  temperature in Kelvin. 
 
Unfortunately, very little work has been done in measuring the diffusivity of 
photoactive compounds in photoresist.  From Walker’s work [6.7], one can 
estimate the values of Ea and Do to be about 35 Kcal/mol and 3.21021 nm2/s, 
respectively. 
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Figure 6-4.  Photoresist profile simulations as a function of the PEB diffusion 

length: (a) 20nm, (b) 40nm, and (c) 60nm.  
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Chapter 7 

Photoresist Development 
 
 
 An overall resist processing model requires a mathematical 
representation of the development process.  Many previous attempts have taken 
the form of empirical fits to development rate data as a function of exposure 
[7.1,7.2].  The model formulated below begins on a more fundamental level, with 
a postulated reaction mechanism which then leads to a development rate equation 
[7.3].  The rate constants involved can be determined by comparison with 
experimental data.  An enhanced kinetic model with a second mechanism for 
dissolution inhibition is also presented [7.4].  Deviations from the expected 
development rates have been reported under certain conditions at the surface of 
the resist.  This effect, called surface induction or surface inhibition, can be 
related empirically to the expected development rate, i.e., to the bulk 
development rate as predicted by a kinetic model. 
 
 Unfortunately, fundamental experimental evidence of the exact 
mechanism of photoresist development is lacking.  The model presented below is 
reasonable, and the resulting rate equation has been shown to describe actual 
development rates extremely well.  However, faith in the exact details of the 
mechanism is limited by this dearth of fundamental studies. 
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A.  Kinetic Development Model 
 
 In order to derive an analytical development rate expression, a kinetic 
model of the development process will be used.  This approach involves 
proposing a reasonable mechanism for the development reaction and then 
applying standard kinetics to this mechanism in order to derive a rate equation.  
We shall assume that the development of a diazo-type positive photoresist 
involves three processes:  diffusion of developer from the bulk solution to the 
surface of the resist, reaction of the developer with the resist, and diffusion of the 
product back into the solution.  For this analysis, we shall assume that the last 
step, diffusion of the dissolved resist into solution, occurs very quickly so that 
this step may be ignored.  Let us now look at the first two steps in the proposed 
mechanism.  The diffusion of developer to the resist surface can be described 
with the simple diffusion rate equation, given approximately by 
 
 ( )r k D DD D S= −  (7.1) 
 
where rD is the rate of diffusion of the developer to the resist surface, D is the 
bulk developer concentration, DS is the developer concentration at the resist 
surface, and kD is the rate constant. 
 
 We shall now propose a mechanism for the reaction of developer with 
the resist.  The resist is composed of large macromolecules of resin R along with 
a photoactive compound M, which converts to product P upon exposure to UV 
light.  The resin is somewhat soluble in the developer solution, but the presence 
of the PAC (photoactive compound) acts as an inhibitor to dissolution, making 
the development rate very slow.  The product P, however, is very soluble in 
developer, enhancing the dissolution rate of the resin.  Let us assume that n 
molecules of product P react with the developer to dissolve a resin molecule.  
The rate of the reaction is 
 
 r k D PR R S

n=  (7.2) 
 
where rR is the rate of reaction of the developer with the resist and kR is the rate 
constant.  (Note that the mechanism shown in equation (7.2) is the same as the 
“polyphotolysis” model described by Trefonas and Daniels [7.5].)  From the 
stoichiometry of the exposure reaction, 
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 P M Mo= −  (7.3) 
 
where Mo is the initial PAC concentration (i.e., before exposure). 
 
 The two steps outlined above are in series, i.e., one reaction follows the 
other.  Thus, the two steps will come to a steady state such that 
 
 r r rR D= =  (7.4) 
 
Equating the rate equations, one can solve for DS and eliminate it from the 
overall rate equation, giving 
 

 r k k D P
k k P

D R
n

D R
n=

+
 (7.5) 

 
Using equation (7.3) and letting m = M/Mo,  the relative PAC concentration, 
equation (7.5) becomes 
 

 r k D m
k k M m

D
n

D R o
n n=
−
+ −

( )
/ ( )

1
1

 (7.6) 

 
 When m = 1 (resist unexposed), the rate is zero.  When m = 0 (resist 
completely exposed), the rate is equal to rmax where 
 

 r k D
k k M

D

D R o
nmax /

=
+1

 (7.7) 

 
If we define a constant a such that 
 
 a k k MD R o

n= /  (7.8) 
 
the rate equation becomes 
 

 r r a m
a m

n

n=
+ −
+ −max

( )( )
( )
1 1

1
 (7.9) 
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Note that the simplifying constant a describes the rate constant of diffusion 
relative to the surface reaction rate constant.  A large value of a will mean that 
diffusion is very fast, and thus less important, compared to the fastest surface 
reaction (for completely exposed resist). 
 
 There are three constants that must be determined experimentally, a, n, 
and rmax.  The constant a can be put in a more physically meaningful form as 
follows.  A characteristic of some experimental rate data is an inflection point in 
the rate curve at about m = 0.2-0.7.  The point of inflection can be calculated by 
letting 
 

 d r
dm

2

2 0=  

 
giving 
 

 ( )a n
n

mTH
n=

+
−

−
( )
( )

1
1

1  (7.10) 

 
where mTH is the value of m at the inflection point, called the threshold PAC 
concentration. 
 
 This model does not take into account the finite dissolution rate of 
unexposed resist (rmin).  One approach is simply to add this term to equation 
(7.9), giving 
 

 r r a m
a m

r
n

n=
+ −
+ −

+max min
( )( )

( )
1 1

1
 (7.11) 

 
This approach assumes that the mechanism of development of the unexposed 
resist is independent of the above-proposed development mechanism.  In other 
words, there is a finite dissolution of resist that occurs by a mechanism that is 
independent of the presence of exposed PAC.  Note that the addition of the rmin 
term means that the true maximum development rate is actually rmax + rmin.  In 
most cases rmax » rmin and the difference is negligible. 
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 Consider the case when the diffusion rate constant is large compared to 
the surface reaction rate constant.  If a » 1, the development rate equation (7.11) 
will become 
 
 r r m rn= − +max min( )1  (7.12) 
 
The interpretation of a as a function of the threshold PAC concentration mTH 
given by equation (7.10) means that a very large a would correspond to a large 
negative value of mTH.  In other words, if the surface reaction is very slow 
compared to the mass transport of developer to the surface there will be no 
inflection point in the development rate data and equation (7.12) will apply.  It is 
quite apparent that equation (7.12) could be derived directly from equation (7.2) 
if the diffusion step were ignored. 
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Figure 7-1.  Development rate plot of the Original Mack model as a function of 

the dissolution selectivity parameter (rmax = 100 nm/s, rmin = 0.1 
nm/s, mTH = 0.5, and n = 2, 4, 8, and 16). 
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 Equation (7.11) is called the Original Mack development model in 
PROLITH/2.  Figure 7-1 shows some plots of this model for different values of 
n.  The behavior of the dissolution rate with increasing n values is to make the 
rate function more “selective” between resist exposed above mTH and resist 
exposed below mTH.  For this reason, n is called the dissolution selectivity 
parameter.  Also from this behavior, the interpretation of mTH as a “threshold” 
concentration becomes quite evident. 
 

B.  Enhanced Kinetic Development Model 
 
 The previous kinetic model is based on the principle of dissolution 
enhancement.  The carboxylic acid enhances the dissolution rate of the 
resin/PAC mixture.  In reality this is a simplification -- there are really two 
mechanisms at work.  The PAC acts to inhibit dissolution of the resin while the 
acid acts to enhance dissolution.  Thus, a development rate expression could 
reflect both of these mechanisms.  A new model, call the enhanced kinetic 
model, was proposed to include both effects [7.4]: 
 

 R R k m
k mresin
enh

inh
l

n

 =    + ( - )
+  ( )

1 1
1

 (7.13) 

 
where kenh is the rate constant for the enhancement mechanism, n is the 
enhancement reaction order, kinh is the rate constant for the inhibition mechanism, 
l is the inhibition reaction order, and Rresin is the development rate of the resin 
alone.   
 
 For no exposure, m=1 and the development rate is at its minimum.  From 
equation (7.13), 
 

 R    =   R
1+ kmin

resin

inh
 (7.14) 

 
Similarly, when m=0, corresponding to complete exposure, the development is at 
its maximum. 
 
 R  =  R   (1+ k )max resin enh  (7.15) 
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Thus, the development rate expression can be characterized by five parameters:  
Rmax, Rmin, Rresin, n, and l.   
 
 Obviously, the enhanced kinetic model for resist dissolution is a superset 
of the original kinetic model.  If the inhibition mechanism is not important, then 
kinh = 0.  For this case, equation (7.13) is identical to equation (7.12) when 
 
 R  =   R ,    R  =  R kmin resin max resin enh  (7.16) 
 
 The enhanced kinetic model of equation (7.13) assumes that mass 
transport of developer to the resist surface is not significant.  Of course, a simple 
diffusion of developer can be added to this mechanism as was done above with 
the original kinetic model.  Equation (7.13) is called the Enhanced Mack 
development model in PROLITH/2.  Figure 7-2 shows several plots of the 
Enahnced Mack model. 
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Figure 7-2.  Plots of the Enhanced Mack development model for rmax = 100 nm/s, 

rresin = 10 nm/s, rmin = 0.1 nm/s and (a) l = 9, and (b) n = 5. 
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C.  Surface Inhibition 
 
 The kinetic models given above predict the development rate of the resist 
as a function of the photoactive compound concentration remaining after the 
resist has been exposed to UV light.  There are, however, other parameters that 
are known to affect the development rate, but which were not included in this 
model.  The most notable deviation from the kinetic theory is the surface 
inhibition effect.  The inhibition, or surface induction, effect is a decrease in the 
expected development rate at the surface of the resist [7.6-7.8].  Thus, this effect 
is a function of the depth into the resist and requires a new description of 
development rate. 
 
 Several factors have been found to contribute to the surface inhibition 
effect.  Baking of the photoresist can produce surface inhibition and two possible 
mechanisms are thought to be likely causes.  One possibility is an oxidation of 
the resist at the resist surface, resulting in reduced development rate of the 
oxidized film [7.6-7.8].  Alternatively, the induction effect may be the result of 
reduced solvent content near the resist surface, which also results from baking 
the resist [7.9].  Both mechanisms could be contributing to the surface inhibition.  
Finally, surface inhibition can be induced with the use of surfactants in the 
developer. 
 
 An empirical model can be used to describe the positional dependence of 
the development rate.  If we assume that the development rate near the surface of 
the resist exponentially approaches the bulk development rate, the rate as a 
function of depth, r(z), is 
 
 ( )( )r z r r eB o

z( ) /= − − −1 1 δ  (7.17) 

 
where rB is the bulk development rate as given by equation (7.11) or (7.13), ro is 
the development rate at the surface of the resist relative to rB, and δ is the depth 
of the surface inhibition layer.  The induction effect has been found to take place 
over a depth of about 100 nm [7.6,7.8]. 
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Figure 7-3.  Example surface inhibition with ro = 0.1 and δ = 100 nm. 
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Chapter 8 

Linewidth Measurement 
 
 
 A cross-section of a photoresist profile has, in general, a very 
complicated two-dimensional shape (Figure 8-1).  In order to compare the shapes 
of two different profiles, one must find a convenient description for the shapes of 
the profiles which somehow reflects their salient qualities.  The most common 
description is to model the resist profile as a trapezoid.  Thus, three numbers can 
be used to describe the profile:  the width of the base of the trapezoid (linewidth, 
w), its height (profile thickness, D), and the angle that the side makes with the 
base (sidewall angle, θ).  Obviously, to describe such a complicated shape as a 
resist profile with just three numbers is a great, though necessary, simplification.  
The key to success is to pick a method of fitting a trapezoid to the profile which 
preserves the important features of the profile, is numerically practical, and as a 
result is not overly sensitive to slight changes in the profile.  As will be shown 
below, the method of defining the “best fit” trapezoid will affect the sensitivity 
of the measured linewidth to profile shape.  Such sensitivity is not particular to 
PROLITH/2, but is a fundamental behavior in any CD measurement system. 
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w
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θ

 
 

Figure 8-1. Typical photoresist profile and its corresponding “best fit” trapezoid. 
 
 
 
 
 PROLITH/2 offers several solutions to the critical dimension (CD) 
metrology problem of fitting a trapezoid to the resist profile.  Each of the three 
methods available in PROLITH/2 has advantages and disadvantages, depending 
on the application.  The three methods will be compared at the end of this 
chapter.  First, however, a special pre-processing algorithm for the resist profile 
will be described. 
 

A.  Creating The Weighted Profile 
 
 PROLITH/2 uses a unique algorithm for analyzing the resist profile.  
This algorithm, called the linear weight method, was created specifically for this 
application.  The goal of this method is to try to mimic the behavior of a top-
down linewidth measurement system.  The first step is to convert the profile into 
a “weighted” profile as follows:  at any given x-position (i.e., along the 
horizontal axis), determine the “weight” of the photoresist above it.  The weight 
is defined as the total thickness of resist along a vertical line at x.  Figure 8-2 
shows a typical example.  The weight at this x position would be the sum of the 
lengths of the line segments which are within the resist profile.  This process is 
then repeated for many x positions.  As can be seen, the original profile is 
complicated and multi-valued whereas the weighted profile is smooth and single-
valued. 
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Figure 8-2. Determining the weighted resist profile. 
 
 
 

B.  Determining Resist Loss and Sidewall Angle 
 
 Besides the width of the feature (which will be discussed in the next 
section), the trapezoid model of the resist profile provides two other parameters:  
the sidewall angle and the resist loss (the height of the profile, D, subtracted from 
the original resist thickness).  In PROLITH/2, the resist loss is defined by setting 
D equal to the tallest part of the resist profile.  Note that this definition of D is the 
same for the weighted profile as for the original profile.  The sidewall angle is 
determined using the weighted profile. 
 
 Because the weighted profile has smoothed out any standing waves that 
may be along the edge of the original profile, the weighted profile is ideal for 
measuring the sidewall angle.  A straight line is fitted through the edge of the 
profile using only the portion of the edge which is between 0.2D and 0.8D in 
height.  Thus, profile anomalies such as top rounding or a bottom foot in general 
do not impact the calculation of sidewall angle.  The sidewall angle is defined as 
the angle that this line makes with the substrate. 
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C.  Determining Feature Width 
 
 PROLITH/2 can use three different methods for measuring feature 
width:  the standard, raw threshold, and weighted threshold methods. 
 

1.  Standard Method 
 
 The standard method for linewidth measurement gets its name not from 
being the preferred method but from being the first method used by PROLITH/2.  
The first version of PROLITH/2 only used the standard method (the weighted 
threshold method was added in v2.1 and the raw threshold method was added in 
v5.0).  As will be seen below, the standard method can suffer from some serious 
flaws and should be used with caution. 
 
 The standard method uses the straight line fit to the side of the weighted 
profile that was used to determine sidewall angle.  The intersection of this line 
with the substrate gives the width of the feature.  Thus, the standard method 
gives the best-fit trapezoid through the middle 60% of the weighted profile and 
then defines the linewidth as the bottom width of this trapezoid. 
 

2.  Raw Threshold Method 
 
 The raw threshold method is meant to mimic a cross-sectional 
measurement.  Using the original resist profile, the width of the feature is defined 
as the width of the original resist profile at a specific height.  The height is 
adjustable and defined by the user, specified as a percentage of D.  Thus a 5% 
threshold value means a measurement very close to the bottom of the resist 
profile.  Figure 8-3(a) illustrates the raw threshold method. 
 

3.  Weighted Threshold Method 
 
 The weighted threshold method works like the raw threshold method 
except using the weighted resist profile.  Thus, the width of the trapezoid is 
adjusted to match the width of the weighted profile at a given threshold resist 
thickness.  For example, with a threshold of 20%, the trapezoid will cross the 
weighted profile at a thickness of 20% up from the bottom.  Thus, the weighted 
threshold method can be used to emphasize the importance of one part of the 
profile.  Figure 8-3(b) illustrates this method of linewidth measurement. 



Linewidth Measurement 119

Threshold
Level

(a)

Original Profile Weighted Profile

(b)  
 
Figure 8-3. Measuring linewidth using (a) the raw threshold method and (b) the 

weighted threshold method. 
 
 
 
 
 In some sense, the weighted threshold method behaves like a top down 
measurement.  Looking at a profile “top-down” would produce a view which 
blurs or smoothes out standing waves, much like the weighted profile does.  
Thus, the weighted threshold method is preferred when trying to match 
simulation to top-down measured data. 
 

D.  Comparing Linewidth Measurement Methods 
 
 The various linewidth determination methods deviate from one another 
when the shape of the resist profile begins to deviate from the general trapezoidal 
shape.  Figure 8-4 shows two resist profiles at the extremes of focus (note that in 
this case the weighted and original profiles are the same).  Using a 10% 
threshold, the linewidths of these two profiles are the same.  Using a 50% 
threshold, however, shows profile (a) to be 20% wider than profile (b).  The 
standard linewidth method, on the other hand, shows profile (a) to be 10% wider 
than profile (b).  Finally, a 1% threshold gives the opposite result, with profile (a) 
10% smaller than profile (b).   
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Figure 8-4. Resist profiles at the extremes of focus. 
 
 
 
 The profiles of Figure 8-4 show the problem with the standard method.  
A straight line fit through the sidewall of profile (a) would intersect the base at 
position wider than the actual resist edge.  On the other hand, the straight line fit 
through profile (b) intersects the base at a position narrower than the actual resist 
edge.  Thus, the standard model seems to give erroneous results whenever the 
resist profile shows large curvature along the sidewalls. 
 
 The effect of changing profile shape on the measured linewidth is further 
illustrated in Figure 8-5 which shows CD versus focus for the standard, 2%, and 
50% weighted threshold CD measurement methods for one set of resist profiles.  
Obviously, the method of measuring the resist profile has a large impact on the 
linewidth (a single number representing the entire profile) and linewidth trends 
such as that shown in Figure 8-5.  It is important to note that sensitivity of the 
measured linewidth to profile shape is not particular to PROLITH/2, but is 
present in any CD measurement system.  Fundamentally, this is the result of 
using the trapezoid model for complicated resist profiles. 
 
 
 



Linewidth Measurement 121

   .30

   .40

   .50

   .60

   .70

 -1.50  -1.00   -.50    .00    .50   1.00

Resist Linewidth (microns)

  Focal Position (microns)

Standard Method

2% Threshold

50% Threshold

 
 
Figure 8-5. Effect of resist profile shape on linewidth measurement in 

PROLITH/2. 
 
 
 
 
 The raw threshold and weighted threshold methods differ whenever there 
are significant standing waves present on the resist profile.  The raw threshold 
method is overly sensitive to standing waves.  A slight change in the raw 
threshold value can move the measurement point from a minimum to a maximum 
point of a standing wave ridge.  Consider a profile such as the one shown in 
Figure 8-3(a).  If the width of this profile is measured using different raw 
threshold values, the result looks like that of Figure 8-6(a).  The measured 
linewidth varies greatly with only a small change in threshold value.  The 
weighted threshold method, on the other hand, smoothes out these variations to 
give the general trend of a smaller width at the top (Figure 8-6(b)). 
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Figure 8-6. Effect of the threshold value on the resulting linewidth for (a) the 

raw threshold method, and (b) the weighted threshold method when 
the profile exhibits standing waves. 

 
 
 
 
 The weighted profile measurement method suffers from the same 
drawback as a top-down measurement system.  If the resist profile is retrograde 
(for example, a resist line which is wider at the top than the bottom), a top-down 
measurement system attempting to measure the bottom of the profile will in fact 
measure the top.  Likewise, the creation of weighted profile will turn a retrograde 
profile into a normal (non-retrograde) profile, making a measurement of the top 
appear to be a measurement of the bottom. 
 
 As a general rule, the standard method can be used whenever the resist 
profile is not too curved along the edges.  The raw threshold method behaves like 
a cross-sectional SEM measurement, but is sensitive to standing waves.  The 
weighted threshold method behaves like a top down measurement, and thus has 
the potential drawback of misinterpreting retrograde profiles. 
 
 Obviously, it is difficult to compare resist profiles when the shapes of the 
profiles are changing.  It is very important to use the linewidth method (and 
proper threshold value, if necessary) which is physically the most significant for 
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the problems being studied.  If the bottom of the resist profile is most important, 
one of the threshold methods with a small (e.g., 5%) threshold is recommended.  
It is also possible to “calibrate” PROLITH/2 to a linewidth measurement system.  
By adjusting the threshold value for CD measurement in PROLITH/2, results 
comparable to actual measurements can be obtained. 
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Chapter 9 
Lumped Parameter Model 

 
 
 Typically, lithography models make every attempt to describe physical 
phenomena as accurately as possible.  However, in some circumstances speed is 
more important than accuracy.  If a model is reasonably close to correct and is 
very fast, many interesting applications are possible.  With this trade-off in 
mind, the Lumped Parameter Model (LPM) was developed [9.1-9.3]. 
 
A.  Development Rate Model 
 
 The mathematical description of the resist process incorporated in the 
lumped parameter model uses a simple photographic model relating 
development time to exposure, while the aerial image simulation uses the normal 
PROLITH models as described in Chapter 2.  A very simple development rate 
model is used based on the assumption of a constant contrast.  Before 
proceeding, however, let us define a few terms needed for the derivations that 
follow.  Let E be the nominal exposure energy (i.e., the intensity in a large clear 
area times the exposure time), I(x) the normalized image intensity, and I(z) the 
relative intensity variation with depth into the resist.  From these definitions, the 
exposure energy as a function of position within the resist (Exz) is just EI(x)I(z) 
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where x=0 is the center of the mask feature and z=0 is the top of a resist of 
thickness D.  Defining logarithmic versions of these quantities, 
 
   =  ln[E] ,     i(x)  =  ln[I(x)] ,     i(z)  =  ln[I(z)] (9.1) 
 
and the logarithm of the energy within the resist is  
 
 ln[Exz]  =   + i(x) + i(z) (9.2) 
 
 The photoresist contrast () is defined theoretically as [9.4] 
 
   d r

d Exz
ln

ln  (9.3) 
 
where r is the resulting development rate at position (x,z) from an exposure of 
Exz.  Note that the base e definition of contrast is used here.  If the contrast is 
assumed constant over the range of energies of interest, equation (9.3) can be 
integrated to give a very simple expression for development rate.  In order to 
evaluate the constant of integration, let us pick a convenient point of evaluation.  
For the standard dose-to-clear measurement, a large clear area is exposed and 
developed.  Let Eo (the dose-to-clear) be the energy required to just clear the 
photoresist in the allotted development time, tdev, and let ro be the development 
rate which results from an exposure of this amount.  Carrying out the integration 
gives 
 
 r x z r e r E

Eo
i x i z

o xz
o

o( , ) ( ( ) ( ) )  





    


 (9.4) 
where 
   =  ln[E0]  
 
 As an example of the use of the above development rate expression and 
to further illustrate the relationship between ro and the dose to clear, consider 
again the standard dose-to-clear experiment where a large clear area is exposed 
and the thickness of photoresist remaining is measured.  The definition of 
development rate,  
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 r dz
dt  (9.5) 

 
can be integrated over the development time.  If   =  o, the thickness remaining 
is by definition zero, so that 
 
 t dz

r r e dzdev
D

o
i z

D
   

0 0
1  ( )  (9.6) 

 
where i(x) is zero for an open frame exposure.  Based on this equation, one can 
now define an effective resist thickness, Deff, which will be very useful in the 
derivation of the lumped parameter model which follows. 
 
 D r z D t r t e e e dz I z

I D dzeff dev o dev i D i D i z
D D     






 ( ) ( )

( )
( ) ( ) ( )  



0 0
 (9.7) 

 
 As an example, the effective resist thickness can be calculated for the 
case when only absorption causes a variation in intensity with depth into the 
resist.  For such a case, I(z) will decay exponentially with an absorption 
coefficient , and equation (9.7) can be evaluated to give 
 
  D eeff D  1 1   (9.8) 
 
If the resist is only slightly absorbing so that D « 1, the exponential can be 
approximated by the first few terms in its Taylor series expansion. 
 
 D D D

eff   1 2
  (9.9) 

 
Thus, the effect of absorption is to make the resist seem thinner to the 
development process.  The effective resist thickness can be thought of as the 
following:  if an “effective” resist had a constant development rate equal to the 
rate of the real resist at the bottom, the “effective” resist thickness would be the 
amount of this effective resist which cleared in the same time as the real resist.  
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For the case of absorption, the development rate is smaller at the bottom so that 
a thinner effective resist is required to clear in the same time. 
 
B.  Segmented Development 
 
 Equation (9.4) is an extremely simple-minded model relating 
development rate to exposure energy based on the assumption of a constant 
resist contrast.  In order to use this expression, we will develop a 
phenomenological explanation for the development process.  This explanation 
will be based on the assumption that development occurs in two steps: a vertical 
development to a depth z, followed by a lateral development to position x 
(measured from the center of the mask feature) [9.5] as shown in Figure 9-1. 
 
 
 

Substrate

Resist

  
Figure 9-1. Illustration of segmented development:  development proceeds first 

vertically, then horizontally, to the final resist sidewall.  
 
 
 A development ray, which traces out the path of development, starts at 
the point (xo,0) and proceeds vertically until a depth z is reached such that the 
resist to the side of the ray has been exposed more than the resist below the ray 
(i.e., E(xo,z+z) < E(xo+x,z)).  At this point the development will begin 
horizontally.  The time needed to develop in both vertical and horizontal 
directions, tz and tx respectively, can be computed from equation (9.4).  The 
development time per unit thickness of resist is just the reciprocal of the 
development rate. 
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where  
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o
or e o 1  (9.11) 

 
The time needed to develop to a depth z is given by 
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Similarly, the horizontal development time is 
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The sum of these two times must equal the total development time. 
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 (9.14) 
 
C.  Derivation of the Lumped Parameter Model 
 
 The above equation can be used to derive some interesting properties of 
the resist profile.  For example, how would a small change in exposure energy  affect the position of the resist profile x?  A change in overall exposure 
energy will not change the depth at which the development ray changes direction 
for our simple segmented development model.  Thus, the depth z in equation 
(9.14) is constant.  Differentiating equation (9.14) with respect to log-exposure 
energy, the following equation can be derived: 
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d

t
x z t r x z

z
dev dev


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Since the x position of the development ray endpoint is just one half of the 
linewidth, equation (9.15) defines a change in critical dimension (CD) with 
exposure energy.  To put this expression in a more useful form, take the log of 
both sides and use the development rate expression (9.4) to give 
 
    ln ln ( ) ( )dx

d t r i x i zdev o o            (9.16) 
 
Rearranging, 
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where  is the (log) energy needed to expose a feature of width 2x.  Equation 
(9.17) is the differential form of the lumped parameter model and relates the CD 
versus log-exposure curve and its slope to the image intensity.  Although a more 
useful form of this equation will be given below, some valuable insight can be 
gained by examining equation (9.17).  In the limit of very large , one can see 
that the CD versus exposure curve (i.e., the term ) becomes controlled only by 
the aerial image.  Thus, exposure latitude becomes image limited.  For small , 
the other terms become significant and the exposure latitude is process limited.  
Obviously, an image limited exposure latitude represents the best possible case. 
 
 A second form of the LPM can also be obtained in the following 
manner.  Applying the definition of development rate to equation (9.15) or, 
alternatively, solving for the slope in equation (9.17), yields 
 
 d

dx t r e
dev o

i x i z o
       1 ( ( ) ( ) )  (9.18) 

 
Before proceeding, let us introduce a slight change in notation that will make the 
role of the variable  more clear.  As originally defined,  is just the nominal 
exposure energy.  In equations (9.16) through (9.18), it takes the added meaning 
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as the nominal energy which gives a linewidth of 2x.  To emphasize this 
meaning, we will replace  by (x) where the interpretation is not a variation of 
energy with x, but rather a variation of x (linewidth) with energy.  Using this 
notation, the energy to just clear the resist can be related to the energy which 
gives zero linewidth, (0). 
 
  o i x  ( ) ( )0 0  (9.19) 
 
where xo = 0 has been assumed for simplicity.  Using this relation in equation 
(9.18), 
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Invoking the definitions of the logarithmic quantities, 
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where equation (9.7) has been used and the linewidth is assumed to be measured 
at the resist bottom (i.e., z = D).  Equation (9.21) can now be integrated. 
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giving 
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Equation (9.23) is the integral form of the lumped parameter model.  Using this 
equation, one can generate a normalized CD vs. exposure curve by knowing the 
image intensity, I(x), the effective resist thickness, Deff, and the contrast, . 
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D.  Alternate Derivation 
 
 The above derivation of the lumped parameter model is not the simplest, 
but is useful since it leads to both the differential form and the integral form of 
the LPM.  In this section an alternate derivation of the integral form will be 
presented. 
 
 Equations (9.12) - (9.14) apply to general development paths assuming 
segmented development.  Since our interest is to determine the bottom linewidth, 
consider a path where the depth z is just equal to the resist thickness D.  
Equation (9.12) for the vertical development time becomes 
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The result is just a statement of the definition of the effective resist thickness 
and could have been written down directly from that definition.  Similarly, 
equation (9.13) for the horizontal development time becomes 
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The total development time is still the sum of these two components. 
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 By applying equations (9.4) and (9.7),  
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Substituting equation (9.27) into (9.26) gives the integral form of the LPM, 
equation (9.23). 
 
E.  Sidewall Angle 
 
 The lumped parameter model allows the prediction of linewidth by 
developing down to a depth z and laterally to a position x, which is one half of 
the final linewidth.  Typically, the bottom linewidth is desired so that the depth 
chosen is the full resist thickness.  By picking different values for z, different x 
positions will result, giving a complete resist profile.  One important result that 
can be calculated is the resist sidewall slope and the resulting sidewall angle.  To 
derive an expression for the sidewall slope, let us first rewrite equation (9.14) in 
terms of the development rate. 
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Taking the derivative of this expression with respect to z, 
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The derivative of the reciprocal development rate can be calculated from 
equation (9.4) or (9.10), 
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As one would expect, the variation of development rate with depth into the resist 
depends on the variation of the exposure dose with depth.  Consider a simple 
example where bulk absorption is the only variation of exposure with z.  For an 
absorption coefficient of , the Lambert law of absorption gives 
 
 d E

dz
xzln[ ]    (9.31) 

 
Using equations (9.30) and (9.31) in (9.29), 
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Recognizing the term in parentheses as simply the development time, the 
reciprocal of the resist slope can be given as 
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 Equation (9.33) shows two distinct contributors to sidewall angle.  The 
first is the development effect.  Because the top of the photoresist is exposed to 
developer longer than the bottom, the top linewidth is smaller resulting in a 
sloped sidewall.  This effect is captured in equation (9.33) as the ratio of the 
development rate at the edge of the photoresist feature to the development rate at 
the center.  Good sidewall slope is obtained by making this ratio small.  The 
second term in equation (9.33) describes the effect of optical absorption on the 
resist slope.  High absorption or poor exposure latitude will result in a reduction 
of the resist sidewall angle.   
 
F. Results 
 
 The lumped parameter model is based on a simple model for 
development rate and a phenomenological description of the development 
process.  The result is an equation which predicts the change in linewidth with 
exposure for a given aerial image.  The major advantages of the lumped 



Inside PROLITH 134

parameter model are its extreme ease of application to a lithography process and 
computational simplicity (i.e., speed).  The two parameters of the model, resist 
contrast and effective thickness, can be determined by the collection of linewidth 
data from a standard focus-exposure matrix.  This data is routinely available in 
most production and development lithography processes; no extra or unusual 
data collection is required.  The result is a simple and fast model which can be 
used as an initial predictor of results or as the engine of a lithographic control 
scheme. 
 
 Additionally, the lumped parameter model can be used to predict the 
sidewall angle of the resulting photoresist profile.  The model shows the two 
main contributors to resist slope:  development effects due to the time required 
for the developer to reach the bottom of the photoresist, and absorption effects 
resulting in a reduced exposure at the bottom of the resist.   
 
 Figure 9-2 shows an example of the output of the LPM.  A complete 
focus-exposure matrix can be simulated by calculating the aerial image through 
focus.  Since aerial image calculations tend to be quite fast, a typical LPM focus-
exposure matrix calculation can be completed in about a second on a typical 
personal computer.  From this data, the process window can be generated and 
the depth of focus determined.  The speed of the calculations makes the LPM 
ideal for optimizing aerial image related quantities.  Examples include numerical 
aperture/partial coherence optimization, aberration tolerancing, off-axis 
illumination studies, phase shifting mask design, and optical proximity 
correction. 
 
 Finally, the lumped parameter model presents a simple understanding of 
the optical lithography process.  The potential of the model as a learning tool 
should not be underestimated.  In particular, the model emphasizes the 
competing roles of the aerial image and the photoresist process in determining 
linewidth control and describes the basic development properties of a resist.  
This fundamental knowledge lays the foundation for further investigations into 
the behavior of optical lithography systems. 
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Figure 9-2. Examples of the output of the Lumped Parameter Model.  By 

calculating the aerial image through focus, an entire focus-exposure 
matrix can be calculated.  Shown are (a) the Bossung curves and 
(b) the process window.  The exposure scale on both plots are 
relative to the nominal exposure at best focus.  
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Chapter 10 
Lithographic Analysis 

 
 
 Characterizing and understanding a lithography process is an important 
part of using processes effectively in manufacturing.  Unfortunately, the 
requisite characterization experiments are expensive and time-consuming.  
Simulation provides an ideal tool to enhance experimental characterization and 
improve the understanding of a given process.  The ease and flexibility of 
modeling tools also allow for quick process changes leading to optimization 
studies.  The sections below describe a few examples of how lithography 
simulation can be used to characterize a lithography process and understand the 
complex interaction among parameters. 
 
A.  Focus Effects  
 
 The effect of focus on a projection lithography system (such as a 
stepper) is a critical part of understanding and controlling a lithographic process.  
This section will address the importance of focus by providing definitions of the 
process window and depth of focus (DOF).  Simulation proves an invaluable tool 
for predicting focus effects, generating process windows, and determining 
realistic values for the DOF. 
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 In general, DOF can be thought of as the range of focus errors that a 
process can tolerate and still give acceptable lithographic results.  Of course, the 
key to a good definition of DOF is in defining what is meant by tolerable.  A 
change in focus results in two major changes to the final lithographic result:  the 
photoresist profile changes and the sensitivity of the process to other processing 
errors is increased.  Typically, photoresist profiles are described using three 
parameters:  the linewidth (or critical dimension, CD), the sidewall angle, and 
the final resist thickness (see Chapter 8).  The variation of these parameters with 
focus can be readily determined for any given set of conditions.  The second 
effect of defocus is significantly harder to quantify:  as an image goes out of 
focus, the process becomes more sensitive to other processing errors such as 
exposure dose and develop time.  Of these secondary process errors, the most 
important is exposure. 
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Figure 10-1. Example of the effect of focus and exposure on the resulting resist 

linewidth.  Focal position is defined as zero at the top of the resist 
with a negative focal position indicating that the plane of focus is 
inside the resist. 
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 Since the effect of focus is dependent on exposure, the only way to 
judge the response of the process to focus is to simultaneously vary both focus 
and exposure in what is known as a focus-exposure matrix.  Figure 10-1 shows a 
typical example of the output of a focus-exposure matrix using linewidth as the 
response (sidewall angle and resist loss can also be plotted in the same way) in 
what is called a Bossung plot [10.1]. Of course, one output as a function of two 
inputs can be plotted in several different ways.  For example, the Bossung curves 
could also be plotted as exposure latitude curves (linewidth versus exposure) for 
different focus settings.  Probably the most useful way to plot this two-
dimensional data set is a contour plot – contours of constant linewidth versus 
focus and exposure (Figure 10-2). 
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Figure 10-2. Displaying the data from a focus-exposure matrix in an alternate 

form, contours of constant CD versus focus and exposure.  
 
 
 The contour plot form of data visualization is especially useful for 
establishing the limits of exposure and focus that allow the final image to meet 
certain specifications.  Rather than plotting all of the contours of constant CD, 
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one could plot only the two CDs corresponding to the outer limits of 
acceptability – the CD specifications.  Because of the nature of a contour plot, 
other variables can also be plotted on the same graph.  Figure 10-3 shows an 
example of plotting contours of CD (nominal 10%), 80 sidewall angle, and 
10% resist loss all on the same graph.  The result is a process window – the 
region of focus and exposure that keeps the final resist profile within all three 
specifications. 
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Figure 10-3. The focus-exposure process window is constructed from contours 

of the specifications for linewidth, sidewall angle, and resist loss.  
The shaded area shows the overall process window.  

 
 
 The focus-exposure process window is one of the most important plots 
in lithography since it shows how exposure and focus work together to affect 
linewidth, sidewall angle, and resist loss.  The process window can be thought of 
as a process capability – how the process responds to changes in focus and 
exposure.  How can we determine if a given process capability is good enough?  
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An analysis of the error sources for focus and exposure in a given process will 
give a process requirement [10.2].  If the process capability exceeds the process 
requirements, yield will be high.  If, however, the process requirement is too 
large to fit inside the process capability, yield will suffer.  A thorough analysis 
of the effects of exposure and focus on yield can be accomplished with yield 
modeling (for example, using ProCD) [10.3], but a simpler analysis can give 
useful insight and can be used to derive a number for depth of focus. 
 
 What is the maximum range of focus and exposure (that is, the 
maximum process requirement) that can fit inside the process window?  A 
simple way to investigate this question is to graphically represent errors in focus 
and exposure as a rectangle on the same plot as the process window.  The width 
of the rectangle represents the built-in focus errors of the processes, and the 
height represents the built-in dose errors.  The problem then becomes one of 
finding the maximum rectangle that fits inside the process window.  However, 
there is no one answer to this question.  There are many possible rectangles of 
different widths and heights that are “maximum”, i.e., they cannot be made 
larger in either direction without extending beyond the process window.  (Note 
that the concept of a “maximum area” is meaningless here.)  Each maximum 
rectangle represents one possible trade-off between tolerance to focus errors and 
tolerance to exposure errors.  Larger DOF can be obtained if exposure errors are 
minimized.  Likewise, exposure latitude can be improved if focus errors are 
small.  The result is a very important trade-off between exposure latitude and 
DOF. 
 
 If all focus and exposure errors were systematic, then the proper 
graphical representation of those errors would be a rectangle.  The width and 
height would represent the total ranges of the respective errors.  If, however, the 
errors were randomly distributed, then a probability distribution function would 
be needed to describe them.  For the completely random case, a Gaussian 
distribution with standard deviations in exposure and focus is used to describe 
the probability of a given error.  In order to graphically represent the errors of 
focus and exposure, one should describe a surface of constant probability of 
occurrence.  All errors in focus and exposure inside the surface would have a 
probability of occurring that is greater than the established cutoff.  What is the 
shape of such a surface?  For fixed systematic errors, the shape is a rectangle.  
For a Gaussian distribution, the surface is an ellipse.  If one wishes to describe a 
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“three-sigma” surface, the result would be an ellipse with major and minor axes 
equal to the three-sigma errors in focus and exposure. 
 
 Using either a rectangle for systematic errors or an ellipse for random 
errors, the size of the errors that can be tolerated for a given process window can 
be determined.  Taking the rectangle as an example, one can find the maximum 
rectangle that will fit inside the processes window.  Figure 10-4 shows an 
analysis of the process window where every maximum rectangle is determined 
and its height (the exposure latitude) plotted versus its width (depth of focus).  
Likewise, assuming random errors in focus and exposure, every maximum 
ellipse that fits inside the processes window can be determined.  The horizontal 
width of the ellipse would represent a three-sigma error in focus, while the 
vertical height of the ellipse would give a three-sigma error in exposure.  
Plotting the height versus the width of all the maximum ellipses gives the second 
curve of exposure latitude versus DOF in Figure 10-4. 
 
 

  
Figure 10-4. The process window of Figure 10-3 is analyzed by fitting all the 

maximum rectangles and all the maximum ellipses, then plotting 
their height (exposure latitude) versus their width (depth of focus). 
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 The exposure latitude versus DOF curves of Figure 10-4 provide the 
most concise representation of the coupled effects of focus and exposure on the 
lithography process.  Each point on the exposure latitude - DOF curve is one 
possible operating point for the process.  The user must decide how to balance 
the trade-off between DOF and exposure latitude.  One approach is to define a 
minimum acceptable exposure latitude, and then operate at this point;  this has 
the effect of maximizing the DOF of the process.  In fact, this approach allows 
for the definition of a single value for the DOF of a given feature for a given 
process.  The depth of focus of a feature can be defined as the range of focus 
that keeps the resist profile of a given feature within all specifications 
(linewidth, sidewall angle, and resist loss) over a specified exposure range.  For 
the example given in Figure 10-4, a minimum acceptable exposure latitude of 
15%, in addition to the other profile specifications, would lead to the following 
depth of focus results: 
 
 DOF  (rectangle) =  0.85 m 
 DOF  (ellipse) =  1.14 m 
 DOF  (average) =  1.00 m 
 
 As one might expect, systematic errors in focus and exposure are more 
problematic than random errors, leading to a smaller DOF.  Most actual 
processes would have a combination of systematic and random errors.  Thus, one 
might expect the rectangle analysis to give a pessimistic value for the DOF, and 
the ellipse method to give an optimistic view of DOF.  The average value of the 
two will be a more realistic number in most cases. 
 
 The definition of depth of focus also leads naturally to the determination 
of best focus and best exposure.  The DOF value read off from the exposure 
latitude versus DOF curve corresponds to one maximum rectangle or ellipse that 
fit inside the process window.  The center of this rectangle or ellipse would then 
correspond to best focus and exposure for this desired operating point. 
 
 All of the above graphs were generated using simulation, which can not 
only generate focus-exposure data, but can analyze the data to determine the 
process window and DOF as well. 
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B.  Point Optimization 
 
 Full optimization of a lithographic process requires thorough and time 
consuming calculations of many effects.  One simplified approach to this 
optimization problem is to perform limited calculations at one point in space, say 
at a point in the resist corresponding to the nominal line edge, and try to 
optimize certain important properties of the resist feature at this point.  Such a 
point optimization method, by its very nature, is somewhat limiting, since any 
interesting and important lithographic effects that occur elsewhere in the 
photoresist are not accounted for.  However, if the point used is of interest (such 
as the nominal line edge) and the method used has physical significance, the 
results can be very useful. 
 
 To further simplify the analysis of a lithographic process, it is highly 
desirable to separate the effects of the lithographic tool from those of the 
photoresist process.  This can be done with reasonable accuracy only if the 
interaction of the tool (i.e., the aerial image) with the photoresist is known.  
Consider an aerial image of relative intensity I(x), where x is the horizontal 
position (i.e., in the plane of the wafer and mask) and is zero at the center of a 
symmetric mask feature. The aerial image exposes the photoresist to produce 
some chemical distribution m(x) within the resist.  This distribution is called the 
latent image.  Many important properties of the lithographic process, such as 
exposure latitude and development latitude, are a function of the gradient of the 
latent image m / x .  Larger gradients result in improved process latitude.  By 
taking the derivative of equation (5.22), it can be shown that the latent image 
gradient is related to the aerial image by [10.4] 
 
 





m
x m m I

x ln( ) ln  (10.1) 
 
where the slope of the logarithm of the aerial image is often called simply the 
log-slope.  The development properties of the photoresist translate the latent 
image gradient into a development gradient, which then allows for the 
generation of a photoresist image.  Optimum photoresist image quality is 
obtained with a large development rate gradient.  A lumped parameter called the 
photoresist contrast, , can be defined that relates the aerial image and the 
development rate r: 
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 
  


ln lnr
x

I
x  (10.2) 

 
Equation (10.2) is called the lithographic imaging equation and shows in a 
concise form how a gradient in aerial image intensity results in a solubility 
differential in photoresist.  The development rate gradient is maximized by 
higher resist contrast and by a larger log-slope of the aerial image. 
 
 The above discussion clearly indicates that the aerial image log-slope is 
a logical metric by which to judge the quality of the aerial image.  In particular, 
the image log-slope, when normalized by multiplication with the feature width 
w, is directly proportional to exposure latitude expressed as a percent change in 
exposure to give a percent change in linewidth.  This normalized image log-
slope (NILS) is given by 
 
 NILS w I

x 

ln  (10.3) 

 
This metric was first discussed by Levenson et al. [10.5], and later in a related 
form by Levinson and Arnold [10.6,10.7], before being explored to great extent 
by this author [10.8 - 10.11, 10.2].  Simulation allows for the simple calculation 
of the NILS and thus its convenient use as an aerial image metric. 
 
 The well known effect of defocus on the aerial image was shown 
previously in Figure 2-11.  Both the edge slope of the image and the center space 
intensity decrease with defocus, and the intensity at the mask edge remains 
nearly constant or increases slightly.  To compare aerial images using the log-
slope, one must pick an x value to use.  An obvious choice is the mask edge (or 
more correctly, the nominal feature edge).  Thus, all subsequent reference to the 
slope of the log-aerial image will be at the nominal feature edge.  Now the effect 
of defocus on the aerial image can be expressed by plotting log-slope as a 
function of defocus, as shown in Figure 10-5.  The log-slope defocus curve has 
proven to be a powerful tool for understanding focus effects. 
 
 Some useful information can be obtained from a plot of log-slope versus 
defocus.  As was previously discussed, exposure latitude varies directly with the 
log-slope of the image.  Thus, a minimum acceptable exposure latitude 
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specification translates directly into a minimum acceptable value of the NILS.  
The log-slope defocus curve can then be used to give a maximum defocus to 
keep the process within this specification.  If, for example, the minimum 
acceptable normalized log-slope of a given process was determined to be 3.5, the 
maximum allowable defocus of 0.5 m lines and spaces on a 0.53 NA i-line 
stepper would be, from Figure 10-5, about ±0.8 m.  This gives a practical 
definition of the depth of focus that separates the effects of the aerial image and 
the photoresist process.  The projection printer determines the shape of the log-
slope defocus curve, and the process determines the range of operation (i.e., the 
minimum NILS value).  If the minimum log-slope needed was 6, one would 
conclude from Figure 10-5 that this printer could not adequately resolve 0.5 m 
lines and spaces.  Thus, resolution can also be estimated from a log-slope 
defocus curve. 
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Figure 10-5. An example of the log-slope defocus curve (0.5 m lines and 

spaces, NA = 0.53, i-line,  = 0.5).  
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 To define a resolution metric based on the image log-slope, consider 
Figure 10-6, which shows the effect of feature size on the log-slope defocus 
curve.  If, for example, a particular photoresist process requires a NILS of 3.8, 
one can see that the 0.4 m features will be resolved only when in perfect focus, 
the 0.5m features will have a DOF of ±0.7 m, and the 0.6 m features will 
have a DOF of ±0.9 m.  Obviously, the DOF is extremely sensitive to feature 
size, a fact that is not evident in the common Rayleigh definition.  Since DOF is 
a strong function of feature size, it is logical that resolution is a function of the 
required DOF.  Thus, in the situation shown in Figure 10-6, if the minimum 
acceptable DOF is ±0.8 m and the required NILS is 3.8, the practical resolution 
is about 0.55m for equal lines and spaces.  Resolution and DOF cannot be 
independently defined, but rather are interdependent.  To summarize, DOF can 
be estimated as the range of focus that keeps the log-slope above some 
specification for a given feature.  Resolution can be estimated as the smallest 
feature that keeps the log-slope above some specification over a given range of 
focus. 
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Figure 10-6. Log-slope defocus curves showing the effect of linewidth (equal 

lines and spaces, NA = 0.53, i-line,  = 0.5). 
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 The key to the above image-based definitions for resolution and DOF is 
the linear correlation between the NILS and exposure latitude.  But in order to 
make quantitative estimates, one must have a reasonable estimate for the 
minimum acceptable normalized log-slope.  How is such an estimate obtained?  
By measuring a focus-exposure matrix, one can obtain an experimental plot of 
exposure latitude (EL) versus defocus (exposure latitude being defined as the 
range of exposure which keeps the linewidth within specification, divided by the 
nominal exposure, and multiplied by 100%).  This can be repeated for many 
different feature types and sizes, if desired.  By comparing such experimental 
data with the log-slope defocus curves as in Figure 10-6, a correlation between 
NILS and exposure latitude can be obtained.  For example, one might find for a 
particular process that data and simulated NILS are empirically correlated by the 
simple expression 
 
 EL NILS 81 11. ( . )  (10.4) 
 
Equation (10.4) in and of itself leads to very revealing interpretations.  First, 
note that in this example a NILS of at least 1.1 must be used before an image in 
photoresist is obtained even at one exposure level.  Above a NILS of 1.1, each 
increment in NILS adds 8.1% exposure latitude.  Finally, if a minimum required 
exposure latitude is specified for a process, this value will translate directly into 
a minimum required NILS.  For example, if an EL of 20% is required, the NILS 
that just achieves this level is 3.6.  Thus, all images with a NILS in excess of 3.6 
would be considered acceptable from an exposure latitude point of view.  
Correlations like equation (10.4) are very process dependent.  However, for a 
given process, such a correlation allows imaging parameters to be studied by 
simply examining the log-slope defocus behavior. 
 
 Many image-related parameters can be easily studied using the log-slope 
defocus curves. The differences between imaging dense and isolated features, or 
lines versus contacts, for example, can be examined.  The log-slope defocus 
approach has been used to optimize the numerical aperture and partial coherence 
of a stepper [10.12] (as seen in Figure 10-7), examine the differences between 
imaging in positive and negative tone resist [10.13] and study the advantages of 
off-axis illumination [10.14]. 
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Figure 10-7. The log-slope can be used to “optimize” a stepper by finding the 

values of numerical aperture and partial coherence which 
maximize the log-slope of a given feature at a given level of 
defocus (i-line, 0.4m lines and spaces, defocus = 0.8m). 

 
 
 
 
 Although defocus is strictly an optical phenomenon, the photoresist 
plays a significant role in determining the effects of defocus.  As one might 
imagine, a better photoresist will provide greater depth of focus.  In light of the 
above description of defocus using log-slope defocus curves, the photoresist 
impacts the DOF by changing the minimum acceptable log-slope specification.  
A better photoresist will have a lower log-slope specification, resulting in a 
greater usable focus range.  This relationship between the photoresist and the 
log-slope specification is determined experimentally as described above by 
measuring exposure latitude versus defocus.  In general, the resulting correlation 
between the NILS and the exposure latitude is given by 
 
 EL NILS  ( )  (10.5) 
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where  is the minimum NILS required to give any image at all in photoresist, 
and  is the percent increase in exposure latitude per unit increase in NILS.  
Thus, to a first degree, the effect of the photoresist on depth of focus can be 
characterized by the two parameters  and . 
 
 Consider for a moment an ideal, infinite contrast photoresist.  For such a 
case, the slope of the exposure latitude curve will be exactly 2/NILS [10.15].  
Thus, using a typical linewidth specification of ±10%, an infinite contrast resist 
would make =10 and =0.  The quality of a photoresist with respect to focus 
and exposure latitude can be judged by how close  and  are to these ideals. 
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Chapter 11 
Uses of Lithography Modeling 

 
 
 
 In the twenty three years since optical lithography modeling was first 
introduced to the semiconductor industry, it has gone from a research curiosity 
to an indispensable tool for research, development and manufacturing.  There are 
numerous examples of how modeling has had a dramatic impact on the evolution 
of lithography technology, and many more ways in which it has subtly, but 
undeniably, influenced the daily routines of lithography professionals.  There are 
four major uses for lithography simulation:  1) as a research tool, performing 
experiments that would be difficult or impossible to do any other way, 2) as a 
development tool, quickly evaluating options, optimizing processes, or saving 
time and money by reducing the number of experiments in the fab, 3) as a 
manufacturing tool, for troubleshooting process problems and determining 
optimum process settings, and 4) as a learning tool, to help provide a 
fundamental understanding of all aspects of the lithography process.  These four 
applications of lithography simulation are not distinct – there is much overlap 
among these basic categories.   
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A.  Research Tool 
 
 Since the initial introduction of lithography simulation in 1974, 
modeling has had a major impact on research efforts in lithography.  Here are 
some examples of how modeling has been used in research. 
 
 Modeling was used to suggest the use of dyed photoresist in the 
reduction of standing waves [11.1].  Experimental investigation into dyed resists 
didn’t begin until 10 years later [11.2,11.3]. 
 
 After phase-shifting masks were first introduced [11.4], modeling has 
proven to be indispensable in their study.  Levenson used modeling extensively 
to understand the effects of phase masks [11.5].  One of the earliest studies of 
phase-shifting masks used modeling to calculate images for Levenson’s original 
alternating phase mask, then showed how phase masks increased defect 
printability [11.6].  The same study used modeling to introduce the concept of 
the outrigger (or assist slot) phase mask.  Since these early studies, modeling 
results have been presented in nearly every paper published on phase-shifting 
masks. 
 
 Off-axis illumination was first introduced as a technique for improving 
resolution and depth of focus based on modeling studies [11.7].  Since then, this 
technique has received widespread attention and has been the focus of many 
more simulation and experimental efforts. 
 
 Using modeling, the advantages of having a variable numerical aperture, 
variable partial coherence stepper were discussed [11.7,11.8].  Since then, all 
major stepper vendors have offered variable NA, variable coherence systems.  
Modeling remains a critical tool for optimizing the settings of these flexible new 
machines. 
 
 The use of pupil filters to enhance some aspects of lithographic 
performance have, to date, only been studied theoretically using lithographic 
models [11.9].  If such studies prove the usefulness of pupil filters, experimental 
investigations may also be conducted. 
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 Modeling has been used in photoresist studies to understand the depth of 
focus loss when printing contacts in negative resists [11.10], the reason for 
artificially high values of resist contrast when surface inhibition is present 
[11.11], the potential for exposure optimization to maximize process latitude 
[11.12,11.13], and the role of diffusion in chemically amplified resists [11.14].  
Lithographic models are now standard tools for photoresist design and 
evaluation. 
 
 Modeling has always been used as a tool for quantifying optical 
proximity effects and for defining algorithms for geometry dependent mask 
biasing [11.15,11.16].  Most people would consider modeling to be a required 
element of any optical proximity correction scheme. 
 
 Defect printability has always been a difficult problem to understand.  
The printability of a defect depends considerably on the imaging system and 
resist used, as well as the position of the defect relative to other patterns on the 
mask and the size and transmission properties of the defect.  Modeling has 
proven itself a valuable and accurate tool for predicting the printability of 
defects [11.17,11.18]. 
 
 Modeling has also been used to understand metrology of lithographic 
structures [11.19-11.22] and continues to find new application in virtually every 
aspect of lithographic research.  In fact, modeling has proven an indispensable 
tool for predicting future lithographic performance and evaluating the theoretical 
capabilities and limitations of extensions for optical lithography far into the 
future. 
 
 One of the primary reasons that lithography modeling has become such a 
standard tool for research activities is the ability to simulate such a wide range of 
lithographic conditions.  While laboratory experiments are limited to the 
equipment and materials on hand (a particular wavelength and numerical 
aperture of the stepper, a given photoresist), simulation gives an almost infinite 
array of possible conditions.  From high numerical apertures to low wavelengths, 
hypothetical resists to arbitrary mask structures, simulation offers the ability to 
run “experiments” on steppers that you do not own with photoresists that have 
yet to be made.  How else can one explore the shadowy boundary between the 
possible and the impossible? 
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B.  Process Development Tool 
 
 Lithography modeling has also proven to be an invaluable tool for the 
development of new lithographic processes or equipment.  Some of the more 
common uses include the optimization of dye loadings in photoresist 
[11.23,11.24], simulation of substrate reflectivity [11.25,11.26], the applicability 
and optimization of top and bottom antireflection coatings [11.27,11.28], and 
simulation of the effect of bandwidth on swing curve amplitude [11.29,11.30].  
In addition, simulation has been used to help understand the use of thick resists 
for thin film head manufacture [11.31] as well as other non-semiconductor 
applications. 
 
 Modeling is used extensively by makers of photoresist to evaluate new 
formulations [11.32,11.33] and to determine adequate measures of photoresist 
performance for quality control purposes [11.34].  Resist users often employ 
modeling as an aid for new resist evaluations.  On the exposure tool side, 
modeling has become an indispensable part of the optimization of the numerical 
aperture and partial coherence of a stepper [11.35-11.37] and in the 
understanding of the print bias between dense and isolated lines [11.38].  The 
use of optical proximity correction software requires rules on how to perform the 
corrections, which are often generated with the help of lithography simulation 
[11.39]. 
 
 As a development tool, lithography simulation excels due to its speed 
and cost-effectiveness.  Process development usually involves running numerous 
experiments to determine optimum process conditions, shake out possible 
problems, determine sensitivity to variables, and write specification limits on the 
inputs and outputs of the process.  These activities tend to be both time 
consuming and costly.  Modeling offers a way to supplement laboratory 
experiments with simulation experiments to speed up this process and reduce 
costs.  Considering that a single experimental run in a wafer fabrication facility 
can take from hours to days, the speed advantage of simulation is considerable.  
This allows a greater number of simulations than would be practical (or even 
possible) in the fab. 
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C.  Manufacturing Tool 
 
 Although you will find less published material on the use of lithography 
simulation in manufacturing environments [11.40-11.42], the reason is the 
limited publications by people in manufacturing rather than the limited use of 
lithography modeling.  The use of simulation in a manufacturing environment 
has three primary goals:  to reduce the number of test or experimental wafers 
which must be run through the production line, to troubleshoot problems in the 
fab, and to aid in decision making by providing facts to support engineering 
judgment and intuition.   
 
 Running test wafers through a manufacturing line is costly not so much 
due to the cost of the test, but due to the opportunity cost of not running product 
[11.43].  If simulation can reduce the time a manufacturing line is not running 
product even slightly, the return on investment can be significant.  Simulation 
can also aid in the time required to bring a new process on-line and in the 
establishment of the base-line capability of a new process. 
 
D.  Learning Tool 
 
 Although the research, development and manufacturing applications of 
lithography simulation presented above give ample benefits of modeling based 
on time, cost and capability, the underlying power of simulation is its ability to 
act as a learning tool.  Proper application of modeling allows the user to learn 
efficiently and effectively.  There are many reasons why this is true.  First, the 
speed of simulation versus experimentation makes feedback much more timely.  
Since learning is a cycle (an idea, an experiment, a measurement, then 
comparison back to the original idea), faster feedback allows for more cycles of 
learning.  Since simulation is very inexpensive, there are fewer inhibitions and 
more opportunities to explore ideas.  And, as the research application has shown 
us, there are fewer physical constraints on what “experiments” can be 
performed.   
 
 All of these factors allows the use of modeling to gain an understanding 
of lithography.  Whether learning fundamental concepts or exploring subtle 
nuances, the value of improved knowledge can not be overstated. 
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Epilogue... 
 
 The impact of simulation on optical lithography has been undeniably 
dramatic.  However, the best is yet to come.  The continuing improvement in 
models, software, and measured input parameters results in greater use of 
simulation almost on a daily basis.  Like a lithography calculator, lithography 
simulation is becoming a commonplace tool that engineers rely on to do their 
jobs.  I hope this book will make the use of the PROLITH family of lithography 
simulation tools more enjoyable, productive and rewarding. 
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Glossary 
 
 
 
ABC Parameters See Dill Parameters 
 
Aberrations, Lens Any deviation of the real performance of 

an optical system (lens) from its ideal 
performance.  Examples of lens aberrations 
include coma, spherical aberration, field 
curvature, astigmatism, distortion, and 
chromatic aberration.  One way to describe 
lens aberrations is through a Zernike 
polynomial fit to the wavefront error at the 
exit pupil of the lens. 

 
Aerial Image An image of a mask pattern that is 

projected onto the photoresist by an optical 
system. 

 
Annular Illumination A type of off-axis illumination where a 

doughnut-shaped (annular) ring of light is 
used as the source. 

 
Antireflective Coating (ARC) A coating which is placed on top or below 

the layer of resist to reduce the reflection 
of light, and hence, reduce the detrimental 
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effects of standing waves or thin film 
interference. 

 
Bandwidth The range of wavelengths that is used to 

illuminate the resist. 
 
Bias See Mask Bias 
 
Binary Mask A mask made up of opaque and transparent 

regions (for example, composed of chrome 
and glass) such that the transmittance of 
the mask is either 0 or 1. 

 
Bleaching The decrease in optical absorption of a 

photoresist due to the chemical changes 
that occur upon exposure to light. 

 
Bossung Curves See Focus-Exposure Matrix 
 
Bottom Antireflective Coating An antireflective coating placed just below 

the photoresist to reduce reflections from 
the substrate. 

 
Cauchy Coefficients Coefficients of the Cauchy equation, which 

gives an emperical variation of the index of 
refraction of a material as a function of 
wavelength. 

 
Chemically Amplified Resist A type of photoresist, most commonly used 

for deep-UV processes, which, upon post-
exposure bake, will multiply the number of 
chemical reactions through the use of 
chemical catalysis. 

 
Clearing Dose (Eo) See Dose to Clear 
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Coherent Illumination A type of illumination resulting from a 
point source of light which illuminates the 
mask with light from only one direction. 

 
Condenser Lens Lens system in an optical projection 

system which prepares light to illuminate 
the mask. 

 
Contrast See Photoresist Contrast 
 
Contrast Enhancement Layer (CEL) A highly bleachable coating on top of 

the photoresist which serves to enhance the 
contrast of an aerial image projected 
through it. 

 
Critical Dimension (CD) The size of a feature printed in resist. 
 
Critical Shape Error (CSE) A metric used to determine the quality of a 

two dimensional feature as compared to 
the desired feature.  See also Image 
Critical Shape Error.  

 
Depth of Focus (DOF) The total range of focus which can be 

tolerated, that is, the range of focus that 
keeps the resulting printed feature within a 
variety of specifications (such as linewidth, 
sidewall angle, resist loss, and exposure 
latitude). 

 
Development The process by which a liquid, called the 

developer, selectively dissolves a 
photoresist as a function of the exposure 
energy. 

 
Development Rate The rate (change in thickness per unit time) 

that the photoresist dissolves in developer 
for a given set of conditions. 
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Development Rate Monitor (DRM) An instrument used to measure the 
development rate of a photoresist by 
measuring the thickness of the resist in situ 
as the development proceeds. 

 
Diffusion Length The average distance that a particle will 

diffuse during post-exposure bake.  This 
distance is defined to be: 

 
 Diffusion Length Dt= 2  
 
 where  D  =  diffusivity,  t  =  bake time 
 
Diffraction The property of light which causes the 

wavefront to bend as it passes a boundary. 
 
Diffraction Pattern The pattern of light entering the objective 

lens due to diffraction by a mask. 
 
Dill Parameters The name of the exposure modeling 

parameters for photoresists which were 
developed by Frederick Dill at IBM in the 
1970s.  Also called the ABC parameters, 
these parameters apply to any photoresist 
which undergoes first order exposure 
kinetics. 

 
Dose See exposure energy 
 
Dose to Clear (Eo) The amount of exposure energy required to 

just clear the resist in a large clear area for 
a given process. 

 
Dose to Size The amount of exposure energy required to 

produce the proper dimension of the 
photoresist feature. 

 
DRM See Development Rate Monitor 
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Duty Cycle The ratio of the width of the feature of 

interest to the pitch of the repeating 
pattern. 

 
E-D Tree See Image E-D Tree 
 
Exposure Dose See Exposure Energy 
 
Exposure Energy The amount of light energy (per unit area) 

that the photoresist is subjected to upon 
exposure by a projection system.  It is 
equal to the light intensity times the 
exposure time. 

 
Exposure Latitude The range of exposure energies (usually 

expressed as a percent variation from the 
nominal) which keeps the linewidth within 
the specified limits. 

 
Exposure Margin The ratio of the dose to size to the dose to 

clear. 
 
Flare The unwanted light that reaches the 

photoresist as a result of scattering and 
reflection off surfaces in the optical system 
that are meant to transmit light.  Also 
called background scattered intensity. 

 
Focal Position See Focus 
 
Focus The position of the plane of best focus of 

the optical system relative to some 
reference plane, such as the top surface of 
the resist. 

 
Focus-Exposure Matrix The variation of linewidth (and possibly 

other parameters) as a function of both 
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focus and exposure energy.  The data is 
typically plotted as linewidth versus focus 
for different exposure energies. 

 
Frequency Plane A term taken from Fourier Optics to 

describe the entrance pupil to an imaging 
lens. 

 
Gaussian Illumination A type of illumination with a Gaussian 

intensity distribution, such as is often 
obtained from a laser source. 

 
GDS-II An industry standard file format for mask 

information. 
 
H-D (contrast) Curve The standard form of the H-D or contrast 

curve is a plot of the relative thickness of 
resist remaining after exposure and 
development of a large clear area as a 
function of log-exposure energy.  The 
theoretical H-D curve is a plot of log-
development rate versus log-exposure 
energy.  (H-D stands for Hurter-Driffield, 
the two scientists who first used a related 
curve in 1890). 

 
Illumination System The light source and optical system 

designed to illuminate the mask for the 
purpose of forming an image on the wafer. 

 
Image Critical Shape Error The value of the error of the resulting 2-D 

aerial image as compared to the desired 
pattern.   

 
Image E-D Trees A contour plot of constant linewidth versus 

exposure and defocus generated under the 
assumption of an infinite contrast resist.  It 
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can be calculated using only the aerial 
image as a function of defocus. 

 
Image Log-Slope The slope of the logarithm of the aerial 

image at the nominal line edge. 
 
Image Placement Error The difference between the center of the 

image and the nominal center of the 
feature.   

 
Incoherent Illumination A type of illumination resulting from an 

infinitely large source of light which 
illuminates the mask with light from all 
possible directions. 

 
Index of Refraction See Refractive Index 
 
Iso-Dense Print Bias The difference between the CDs of a dense 

line and an isolated line holding all other 
parameters constant.   

 
Latent Image The reproduction of the aerial image in 

resist as a spatial variation of chemical 
species (for example, the variation of 
photoactive compound concentration). 

 
Linewidth See Critical Dimension. 
 
Log-Slope See Image Log Slope 
 
Lumped Parameter Model A simple model of photoresist exposure 

and development which lumps all effects 
into two lumped parameters:  an effective 
resist thickness and a lumped photoresist 
contrast. 

 
Mask A glass or quartz plate containing 

information (encoded as a variation in 
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transmittance and/or phase) about the 
features to be printed.  Also called a 
photomask or a reticle. 

 
Mask Biasing The process of changing the size or shape 

of the mask feature in order for the printed 
feature size to more closely match the 
nominal or desired feature size. 

 
Metrology The process of measuring structures on the 

wafer, such as the width of a printed resist 
feature. 

 
Modeling See Simulation 
 
Negative Photoresist A photoresist whose chemical structure 

allows for the areas which are exposed to 
light to develop at a slower rate than those 
areas not exposed to light. 

 
Normalized Image Log-Slope (NILS) The image log-slope multiplied by the 

nominal feature width. 
 
Numerical Aperture The sine of the maximum half-angle of 

light which can make it through a lens, 
multiplied by the index of refraction of the 
media. 

 
Objective Lens The main imaging lens of an optical 

projection system.  Also called the 
projection lens or the reduction lens. 

 
Off-Axis Illumination Illumination which has no on-axis 

component, i.e., which has no light which 
is normally incident on the mask.  
Examples of off-axis illumination include 
annular and quadrupole illumination. 
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Optical Path Difference (OPD) The difference in optical path (related to 
the difference in phase) between an actual 
wavefront emerging from a lens and the 
ideal wavefront, as a function of position 
on the wavefront. 

 
Optical Proximity Correction (OPC) A method of selectively changing the 

shapes of patterns on the mask in order to 
more exactly obtain the desired printed 
patterns on the wafer. 

 
PAC See Photoactive Compound 
 
PAC Gradient The slope of the latent image at the bottom 

of the resist and at the nominal line edge. 
 
Partial Coherence The ratio of the sine of the maximum half-

angle of illumination striking the mask to 
the numerical aperture of the objective 
lens.  Also called the degree of coherence 
and the pupil filling function, this term is 
usually given the symbol σ. 

 
Partially Coherent Illumination A type of illumination resulting from a 

finite size source of light which illuminates 
the mask with light from a limited range of 
directions. 

 
Pattern Placement Error The difference between the center of a 

simulated resist pattern from the nominal 
(designed) center. 

 
PEB See Post-Exposure Bake 
 
PEB Diffusion Length The diffusion length of chemical species 

during a post-exposure bake.  (See also 
Diffusion Length) 
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Phase-Shifting Mask A mask which contains a spatial variation 
not only in intensity transmittance but 
phase transmittance as well. 

 
Photoactive Compound (PAC) The component of a photoresist which is 

sensitive to light (also called a sensitizer). 
 
Photoacid Generator (PAG) The light sensitive component of a 

chemically amplified resist which 
generates an acid upon exposure to light. 

 
Photolithography The process of creating a three-

dimensional relief image in a photoresist 
by exposure of the photoresist to light. 

 
Photomask See Mask 
 
Photoresist A photosensitive material which forms a 

three-dimensional relief image by exposure 
to light and allows the transfer of the 
image into the underlying substrate (for 
example, by resisting an etch). 

 
Photoresist Contrast A measure of the resolving power of a 

photoresist, the photoresist contrast is 
defined in one of two ways.  The measured 
contrast is the slope of the standard H-D 
curve as the thickness of resist approaches 
zero.  The theoretical contrast is the 
maximum slope of a plot of log-
development rate versus log-exposure 
energy.  The photoresist contrast is usually 
given the symbol γ. 

 
Pitch The sum of the linewidth and spacewidth 

for a repeating pattern of lines and spaces. 
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Point Spread Function The aerial image resulting from an 
infinitely small isolated pinhole on the 
mask. 

 
Positive Photoresist A photoresist whose chemical structure 

allows for the areas which are exposed to 
light to develop at a faster rate than those 
areas not exposed to light. 

 
Post-Exposure Bake (PEB) The process of heating the wafer 

immediately after exposure in order to 
stimulate diffusion of the PAC and reduce 
the effects of standing waves.  For a 
chemically amplified resist, this bake also 
causes a catalyzed chemical reaction. 

 
Prebake The process of heating the wafer after 

application of the photoresist in order to 
drive off the solvents in the resist (also 
called softbake and post-apply bake). 

 
Process Window A window made by plotting contours 

corresponding to various specification 
limits as a function of exposure and focus.  
One simple process window, called the CD 
process window, is a contour plot of the 
high and low CD specifications as a 
function of focus and exposure.  Other 
typical process windows include sidewall 
angle and resist loss.  Often, several 
process windows are plotted together to 
determine the overlap of the windows. 

 
Pupil Also called an aperture, this is the opening 

at the entrance or the exit of a lens.  The 
size of a circular pupil is defined by its 
numerical aperture. 
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Pupil Filter A device used to alter the transmission 
and/or phase of the light as it passes 
through the pupil of the objective lens. 

 
Quadrupole Illumination A type of off-axis illumination where four 

circles of light are used as the source.  
These four circles are spaced evenly 
around the optical axis. 

 
Reduction Ratio The ratio of the size of the features on the 

mask to the size of the features printed on 
the wafer. 

 
Refractive Index The real part of the refractive index of a 

material is the ratio of the speed of light in 
vacuum to the speed of light in the 
material.  The imaginary part of the 
refractive index is determined by the 
absorption coefficient of the material α and 
is given by αλ/4π where λ is the vacuum 
wavelength of the light. 

 
Resist See Photoresist 
 
Resist Linewidth See Critical Dimension 
 
Resist Gamma See Photoresist Contrast 
 
Resist Reflectivity The reflectivity of a photoresist coated 

wafer.  This reflectivity corresponds to the 
reflectivity that would be measured by 
bouncing light off of the resist coated 
wafer.  If a Top ARC or CEL is used, the 
reflectivity could include these films as 
well. 

 
Reticle See Mask 
 



Inside PROLITH 174 

Scalar Image Model A mode of image calculation based on 
scalar descriptions of light. 

 
SEM Scanning Electron Microscope which is 

used to inspect photoresist profiles and 
measure critical dimensions. 

 
SEM Array An array of SEM cross-sections of 

photoresist profiles through focus and 
exposure. 

 
Sensitizer See Photoactive Compound 
 
Sidewall Angle The angle that a photoresist profile makes 

with the substrate. 
 
Simulation The process of using physical models to 

predict the behavior of a complex process. 
These models are usually implemented as 
computer software. 

 
Smiley Plot See Focus-Exposure Matrix 
 
Standing Waves A periodic variation of high and low 

intensity as a function of depth into the 
resist that results from interference 
between a plane wave of light traveling 
down through the photoresist and one 
which is reflected up from the substrate. 

 
Substrate The film stack, including the wafer, on 

which the photoresist is coated. 
 
Substrate Reflectivity The total reflectivity of the substrate 

beneath the resist.  This is the reflectivity 
that light experiences after it passes 
through the resist and strikes the substrate. 
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Surface Inhibition A reduction of the development rate at the 
top surface of a photoresist relative to the 
bulk development rate. 

 
Swing Curve A sinusoidal variation of a parameter, such 

as linewidth or Eo, as a function of resist 
thickness caused by thin film interference 
effects. 

 
Swing Ratio Determined from the linewidth swing 

curve, the linewidths of the first two 
maximums are averaged together to give 
CDmax.  Then using the linewidth at the 
minimum between these two maximums, 
called CDmin, the swing ratio is defined as: 

 
 SR  =  2*(CDmax - CDmin)/(CDmax + CDmin) X 100% 
 
TAR A top antireflection coating used to reduce 

swing curves. 
 
Vector Image Model A mode of image calculation based on 

vector descriptions of light. 
 
Zernike Coefficients The coefficients of the Zernike 

polynomial. 
 
Zernike Polynomial A specific polynomial, usually cut off at 36 

terms, used to fit the wavefront error of a 
lens for a given field point.  This 
polynomial characterizes the aberrations of 
the lens. 

 


