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John William Strutt, the third Baron Rayleigh of Terling Place, was one the most celebrated 
physicists of his day [1].  Hardly a subject in classical physics went without a contribution from 
this prolific scientist, including the discovery of argon, for which he won the Nobel prize in 
1904.  Although his contributions in acoustics, mathematics, optical scattering, and 
hydrodynamics were very significant, he is most remembered by lithographers for his treatment 
of imaging.  Describing the imaging capabilities of telescopes, Lord Rayleigh developed the now 
famous Rayleigh criteria for resolution and depth of focus.  In this column we’ll repeat a version 
of Lord Rayleigh’s derivation (using the modern terminology and use case of lithography) and 
see how the Rayleigh depth of focus criterion can be extended to high numerical apertures and 
immersion lithography [2]. 
 
 A common way of thinking about the effect of defocus on an image is to consider the 
defocusing of a wafer as equivalent to causing an aberration – an error in curvature of the actual 
wavefront relative to the desired wavefront (i.e., the one that focuses on the wafer – see Figure 
1).  Looking at Figure 1b, the distance from the desired to the “defocused” wavefront goes from 
zero at the center of the exit pupil and increases as we approach the edge of the pupil.  This 
distance between wavefronts is called the optical path difference (OPD).  The OPD is a function 
of the defocus distance δ and the position within the pupil and can be obtained from the 
geometry shown in Figure 2.  Describing the position within the exit pupil by an angle θ, the 
optical path difference is given (after a bit of geometry and algebra) by 
 
 )cos1( θδ −=OPD  (1) 
 
 Depth of focus (DOF) is defined generically as the range of focus that can be tolerated.  
While an exact criterion for “tolerated” is application dependent, a simple example can be used 
to guide a basic description of DOF.  Consider the imaging of an array of small lines and spaces.  
The diffraction pattern for such a mask is a set of discrete diffraction orders, points of light 
entering the lens spaced regularly depending only on the wavelength of the light λ and the pitch 
p of the mask pattern.  The angles at which these diffraction orders will emerge from the lens are 
given by Bragg’s condition: 
 

 
p

mλθ =sin  (2) 

 
where m is an integer.  Using this integer to name the diffraction orders, a high resolution pattern 
of lines and spaces will result in only the zero and the plus and minus first diffraction orders 
passing through the lens to forming the image. 
 



 Combining equations (1) and (2) we can see how much OPD will exist between the zero 
and first orders of our diffraction pattern.  Unfortunately, some trigonometric manipulations will 
be required to convert the cosine of equation (1) into the more convenient sine of equation (2).  
One such manipulation uses a Taylor series: 
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At the time of Lord Rayleigh, lens numerical apertures were relatively small.  Thus, the largest 
angles going through the lens were also quite small and the higher order terms in the Taylor 
series could be ignored, giving 
 
 θδ 2
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1 sin≈OPD  (4) 

 
 How much OPD can our line/space pattern tolerate?  Consider the extreme case.  If the 
OPD were set to a quarter of the wavelength, the zero and first diffracted orders would be 
exactly  90º out of phase with each other.  At this much OPD, the zero and first orders would not 
interfere with each other at all and no pattern would be formed.  The true amount of tolerable 
OPD must be less than this amount. 
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Substituting this maximum permissible OPD into equation (4), we can find the DOF. 
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 At this point Lord Rayleigh made a crucial application of this formula that is often 
forgotten.  While equation (6) would apply to any small pattern of lines and spaces (that is, any 
pitch applied to equation (2) so that only the zero and first orders go through the lens), Lord 
Rayleigh essentially looked at the extreme case of the smallest pitch that could be imaged – the 
resolution limit.  The smallest pitch that can be printed would put the first diffracted order at the 
largest angle that could pass through the lens, defined by the numerical aperture, NA.  For this 
one pattern, the general expression (6) becomes the more familiar and specific Rayleigh DOF 
criterion: 
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NA
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 From the above derivation we can state the restrictions on this conventional expression of 
the Rayleigh DOF:  relatively low numerical apertures imaging a binary mask pattern of lines 
and spaces at the resolution limit.  To lift these restrictions we simply use the exact OPD 
expression and leave the angle to be defined by equation (2). 
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This high NA version of the Ralyeigh DOF criterion still assumes we are imaging a small binary 
pattern of lines and spaces, but is appropriate at any numerical aperture.  It can also be modified 
to account for immersion lithography quite easily.  When the space between the lens and the 
wafer is filled with a fluid of refractive index nfluid, the optical path difference becomes the 
physical path different multiplied by this refractive index.  Thus equation (1) becomes 
 
 )cos1( θδ −= fluidnOPD  (9) 
 
and the high NA version of the Rayleigh criterion becomes 
 

 
)cos1(2

2
θ

λ
−

=
fluidn

kDOF  (10) 

 
Likewise, the angle θ can be related to the pitch by the modification of equation (2) to account 
for immersion. 
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Combining equations (10) and (11) one can see how immersion will improve the depth of focus 
of a given feature: 
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As Figure 3 shows, the improvement in DOF is at least the refractive index of the fluid, and 
grows larger from there for the smallest pitches.  It’s no wonder immersion lithography is 
attracting so much attention. 
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Figure 1.  Focusing of light can be thought of as a converging spherical wave:  a) in focus, and b) 
out of focus by a distance δ. 
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Figure 2.  Geometry relating the optical path difference (OPD) to the defocus distance δ and the 
angle θ. 
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Figure 3.  For a given pattern of small lines and spaces, using immersion improves the depth of 
focus by at least the refractive index of the fluid (in this example, λ = 193nm, nfluid = 1.46). 
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