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The diffusion of chemical species during post-exposure bake is a necessary evil.  For a 
chemically amplified resist, acid must diffuse in order to find reactive sites on the polymer to 
deblock.  It is the deblocking that changes the resist solubility, and the greater the amount of 
diffusion, the greater the amount of deblocking.  But diffusion will also reduce resolution.  
Consider a diffusion length (the average distance that a particle will diffuse) that is greater than 
the feature size − all of the information of the feature will disappear as it smears itself out due to 
this diffusion.  Of course, a good resist used properly will have a diffusion length much smaller 
than the desired feature size.  But how much diffusion is too much?  Since reducing diffusion 
reduces the amount of deblocking (and thus the sensitivity of the resist), we don’t want to drive 
diffusion too low.  In this column we’ll derive some simple rules to quantitatively explain the 
impact of diffusion on resolution. 
 
 While the full reaction-diffusion kinetics of a chemically amplified resist are manageably 
complex, here we’ll consider the simpler case of a conventional resist so that diffusion can be 
treated by itself.  Fickean diffusion, where the diffusivity of the diffusing material remains 
constant, can be treated as a simple convolution problem.  If m(x) is the original latent image (the 
spatial distribution of chemical species in the resist), the new latent image after diffusion m*(x) 
can be found by convolving the original chemical distribution with a Gaussian: 
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where σD is the diffusion length.  While a one-dimensional case is shown here, it is easy to 
extend the convolution to two or three dimensions (though things do get more complex when 
boundary conditions are applied). 
 
 Consider first the case of an isolated line (dense features will be considered next).  To 
make things very simple, let’s assume the isolated line latent image before diffusion is a 
Gaussian of width w.  That makes the convolution calculation very simple:  the convolution of 
two Gaussians is itself a Gaussian that is wider than the original two. 
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where w* is the width of the latent image after diffusion and wD is the width of the diffusion 
Gaussian.  If we measure the width of the feature at the 30% threshold, then wD ≈ 3.1σD.  As an 
example, if the diffusion length is 10% of the original feature size (a not uncommon case), the 



post-diffusion feature size will be 5% larger.  If the diffusion length is increased to 20% of the 
feature size, the final feature will grow by 18% compared to the original.   
 
 But tracking the width of the final isolated feature is not necessarily the most appropriate 
way to explain the impact of diffusion on resolution.  When trying to print a feature at a given 
target size, increased diffusion can be compensated by a change in exposure dose to get the 
correct final dimension.  The effect of diffusion then is a loss in process latitude due to a 
reduction in the slope of the latent image.  For a Gaussian image shape, the log-slope at any 
given position is inversely proportional to the square of the width of the Gaussian.  Thus, while a 
diffusion length that is 10% of the pre-diffusion feature size will grow the feature size by about 
5%, it will also reduce the log-slope of the latent image at the nominal feature edge by about 
10% (see Figure 1).  The impact of reducing the latent image slope will be a loss in exposure 
latitude and thus process window.  For an isolated feature, resolution is limited by your ability to 
control smaller features, so a reduction in process latitude translates directly into worse 
resolution. 
 
 For dense features, the impact of diffusion is a bit different.  The pitch resolution, the 
smallest pitch that can be imaged, is determined by the frequency cut-off of the imaging lens.  
Thus, strictly speaking, diffusion has no role to play in the ultimate pitch resolution.  But like the 
isolated feature discussed above, diffusion reduces process latitude by lowering the slope of the 
latent image.  Consider a generic latent image for a repeating line/space pattern of pitch p 
described as a Fourier series: 
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where a pattern symmetrical about x = 0 is assumed so that there are no sine terms in the series.  
Larger values of n represent higher frequency terms (harmonics) in the image, though a typical 
high resolution dense pattern will have an upper limit of N = 2 or 3.  The effect of diffusion has 
been previously described [1] as simply a reduction in the amplitude of each harmonic. 
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Several interesting observations can be made from this expression.  Obviously, a greater 
diffusion length leads to a greater degradation of the latent image (an is reduced).  But it is the 
diffusion length relative to the pitch that matters.  Thus, for the same diffusion length, smaller 
pitch patterns are degraded more than larger pitch patterns.  Also, the higher frequency terms 
degrade faster than the lower frequency terms.  In fact, each frequency term can be said to have 
an effective diffusion length equal to nσD  and it is the ratio of this effective diffusion length to 
the pitch that determines the amount of damping for that frequency component (Figure 2). 
 
 Given the discussion above, which pattern is more sensitive to diffusion, a dense feature 
or an isolated feature?  Let’s assume that both features have the same nominal feature size, that 



the dense features are equal lines and spaces, and that the dense features are high resolution so 
that only the zero and first harmonics are found in the latent image.  For the dense pattern, the 
latent image log-slope will be proportional to a1/a0.  For manageably small levels of diffusion, 
the impact of diffusion on the latent image log-slope for each feature type becomes 
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Thus, a small isolated line is about twice as sensitive to diffusion as a small dense pattern of lines 
and spaces.  In reality, even the smallest dense features often have some higher frequency 
components (n = 2 and possibly 3) in their latent images, so that the difference between dense 
and isolated feature sensitivity to diffusion is not as great as that given in equation (4). 
 
 As a final note, it is interesting to compare the effects of diffusion to the effects of 
defocus.  In general, the impact of defocus on an image is much more complicated than 
diffusion, since defocus adds a phase error to electric field diffraction orders that can then 
recombine in non-linear (and sometimes non-obvious) ways.  However, for some simple cases a 
direct comparison can be made.  In a previous edition of this column (MLW, November 2004), 
the impact of defocus on an alternating phase shifting mask was described.  For a pattern of 
small lines and spaces such that only and all of the two first orders are captured, the effect of 
defocus is to reduce the magnitude of the primary harmonic of the intensity image: 
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where δ is the defocus distance, NA is the numerical aperture, and σ is the partial coherence (not 
to be confused with the diffusion length!).  For small amounts of defocus and diffusion, the 
Bessel function defocus effect of equation (5) and the exponential diffusion effect of equation (3) 
can both be expanded as Taylor series. 
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Comparing these two approximate expressions, a small amount of defocus is equivalent to a 
small amount of diffusion. 
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Again, there is not always perfect correlation between diffusion and defocus, depending on the 
specifics of the imaging case.  But sometimes, the idea that a focus blur behaves just like a 
diffusion blur is as accurate as it is intuitive. 
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Figure 1. Effect of diffusion on the latent image log-slope for an isolated line (Gaussian latent image 

shape assumed). 
 
Figure 2. Effect of diffusion on the latent image frequency components for a dense line. 
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Figure 1. Effect of diffusion on the latent image log-slope for an isolated line (Gaussian latent image 

shape assumed). 
 
 

0.5

0.6

0.7

0.8

0.9

1.0

0.00 0.05 0.10 0.15 0.20

nσ/p

an
*/a

n

 
Figure 2. Effect of diffusion on the latent image frequency components for a dense line. 
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