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Measuring Line Edge Roughness:  
Fluctuations in Uncertainty 
 
Line edge roughness (LER) is the deviation of a feature edge (as viewed top-down) from a 
smooth, ideal shape – that is, the edge deviations of a feature that occur on a dimensional scale 
smaller than the resolution limit of the imaging tool that was used to print the feature [1].  Line 
width roughness (LWR) is defined similarly.  As one might expect, the same measurement tools 
and techniques used to measure the width of a feature are often used to measure its roughness, 
with the scanning electron microscope (SEM) being the most common tool.  Unfortunately, 
doing a good job of measuring roughness is extremely difficult and fraught with pitfalls.  Very 
different approaches are required for measuring the roughness of a feature compared to 
measuring the width of that feature. 
 
 First, measuring the uncertainty in an edge is a much more “noisy” exercise than 
measuring edge itself.  Assuming only (normally distributed) random errors in edge position 
measurement, for n measurements of an edge (or width) used to determine its roughness, the 
relative uncertainty in the measured roughness (with roughness expressed as the standard 
deviation of the edge position, σLER) can be estimated as 
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To measure the LER to 10% precision, 50 measurements of edge positions must be made.  While 
this may seem like a lot of measurements, there is any easy way to get many more than this.  By 
taking an image of the rough feature (Figure 1) and processing it off-line to determine edge 
position, it is very easy to extract hundreds of edge deviations from this one image and thus 
calculate σLER with sufficient precision. 
 
 But while the precision of an LER measurement can be easily quantified and controlled, 
how about the accuracy of the measurement?  In particular, is such a measurement unbiased, 
meaning that as the precision error of the measurement goes to zero, does the measured edge 
deviation (σmeasured) approached the actual edge standard deviation (σLER)?  In general the answer 
is no.  There are two main sources of bias (also called systematic error) commonly encountered 
in LER measurement:  SEM noise, and the measurement’s finite frequency content. 
 
 The difficulty in measuring uncertainty (such as the uncertainty in a feature edge) is that 
any uncertainty in the measurement itself (such as noise in the SEM signal) adds in quadrature to 
the thing being measured.  Unlike measuring the mean value (such as measuring the feature 
width), errors don’t cancel on average when making many repeated measurements.  As a result, 
the measured roughness is biased – it appears greater than the actual roughness [2]: 
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SEM noise comes from the limited number of electrons detected and shows up as the noisy 
“snow” that effectively defines the look and feel of an SEM image.  Low electron dose, defocus 
of the beam spot, and stigmatic error all contribute to increased SEM noise.  Optimal SEM 
operation results in σSEM noise not much lower than 1 nm [3], which is on the order of the 
roughness of many of the features being measured. 
 
 When measuring feature critical dimension (CD), SEM noise is often dealt with by pixel 
averaging (binning).  Such image smoothing techniques, however, smooth out the true roughness 
in the image just as much as the SEM noise.  The best way to correct for measurement noise bias 
is to turn off all pixel smoothing algorithms and instead carefully measure the SEM noise 
directly (preferably on the exact sample of interest) and subtract it from the measured roughness 
value using equation (1) [2].  Although it may involve taking multiple images of the same 
sample (thus making measurements slow), the results can be made as accurate as patience 
allows.  Unfortunately, since 193 nm resists react physically to electron exposure producing 
resist shrinkage, they have strict limits on the total electron dose that can be tolerated. 
 
 The second source of bias in LER measurements tends to always make the measured 
LER less than the actual LER.  The fundamental roughness of a feature edge has not only a 
magnitude but a frequency content as well.  For a measured edge deviation ∆(y), where y 
represents the different points along the line where the edge is measured, its spatial frequency 
behavior is best captured by examining its Fourier transform.  A very convenient way of viewing 
this frequency content is through the Power Spectral Density (PSD), defined as the square of the 
magnitude of the edge deviation Fourier transform. 
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(Similarly, the LWR PSD can be defined in the same way.)  The PSD shows the square of the 
roughness (that is, the edge variance) per unit spatial frequency. 
 
 For a type of roughness called “white” noise, the PSD is a constant for all spatial 
frequencies.  But resist roughness is not white noise, and the behavior of the PSD as a function of 
spatial frequency can be very revealing.  The interesting behavior comes from the fact that a 
given point on the edge is correlated with nearby points, but not with points far away.  The 
correlation of different edge points is described by their correlation function R(τ): 
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where τ is the distance between two points along the line.  The PSD is the Fourier transform of 
the correlation function (under some constraints that are thought to apply here). 
 



 A very simple and common model for roughness correlation is to assume that very close 
points are perfectly correlated, and then the degree of correlation falls off exponentially with 
distance. 
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where σLER is the magnitude of the LER, Lc is called the correlation length, and α is called the 
roughness exponent (also called the Hurst exponent).  Correlation lengths for 193 nm resists 
have been reported to be in the range of 10 – 100 nm.  For the special case of α = 0.5, the PSD 
can be calculated analytically [4]: 
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A plot of equation (5) is shown in Figure 2.  At frequencies below 1/2πLc (length scales larger 
than the correlation length), the PSD becomes flat (white, uncorrelated noise).  Above this 
frequency, the PSD falls off as 1/f 2 (fractal behavior).   
 
 By Parseval’s theorem, the area under the PSD curve must equal LER variance ( 2

LERσ ), 
and integrating equation (5) over all frequencies does give this result.  But when measuring LER, 
only a certain range of frequencies can be covered.  In particular, the minimum possible 
frequency sampled by the measurement is determined by the maximum distance between 
measurement points along the line (that is, by the size of the measurement box, Lbox). 
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Any low-frequency roughness at frequencies less than this minimum will not be seen by the 
measurement.  As a result, the roughness measurement will be biased, producing a value less 
than the actual roughness.   
 
 Using the model PSD of equation (5), the impact of missing these low frequency 
components can be calculated. 
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If Lbox is chosen to be much greater than the correlation distance Lc, the measured roughness 
approaches the actual value.  Figure 3 shows a plot of the square root of equation (7), something 
often called a σ(L) curve [5].  The measured value of LER or LWR approaches the actual value 
as the length of the line being measured approaches infinity.  But for finite (and thus real) 
measurement lengths, the measured roughness is always less than the actual roughness.  
According to this simple model, when the measurement box is ten times the correlation length, 
the measured roughness is about 3.2% too low.  If the measurement length is reduced to five 



times the correlation length, the measured roughness will be systematically low by about 6.5%.  
It is important to note that the amount of bias encountered for a given Lbox depends on Lc, and is 
thus resist and resist process dependent. 
 
 Measuring LER has two common systematic errors.  SEM noise biases the measurement 
upward, and can only be corrected by characterizing the noise and subtracting it out.  Smoothing 
algorithms typically employed for improved edge detection during CD measurement should 
never be used when measuring LWR or LER.  Second, the finite frequency range of 
measurements means that very low frequency roughness will not be captured, biasing the 
measurement downward.  This bias can be reduced by using very long measurement lengths, or 
by characterizing the correlation length and correcting the measurements using equation (7).  
Unless both of these biases are controlled and corrected for, any given LER measurement may be 
higher or lower than the actual roughness, possibly by a large amount.  And since the biases are 
dependent both on the SEM (tool and measurement process) and on the resist (material and resist 
process), comparing biased measurements is extremely problematic.  Most of the LER literature 
provides no description of how LER is measured, and thus whether these biases have been 
accounted for.  It’s no wonder that the industry has been so slow in understanding LER trends 
and mechanisms. 
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Figure 1.  LER, as described by the three sigma deviation of an edge from a straight line, is 
measured with high precisions by capturing the image of a long segment of a line. 
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Figure 2.  An idealized PSD with σLER = 1.5 nm and Lc = 25 nm. 
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Figure 3.  A plot of the measured LER relative to the actual value as a function of the size of the 
measurement box used.  The measured value approaches the actual value as the length of the line 
being measured approaches infinity. 


